<span>There's nothing on that list that may be damaged by increase in solar activity.
</span>
Explanation:
Momentum Is defined as the product of of mass and its velocity
Momentum (M) =mass *velocity
SI unit of momentum is kgm/s
The rate of change in momentum
=change in momentum / time
=(mv-mu)/t
Answer:
-4.0 N
Explanation:
Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):
(1)
We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

And we can fidn the acceleration by using the formula:

where
v = 0 is the final velocity
u = 1.75 m/s is the initial velocity
t = 2.25 s is the time the box needs to stop
Substituting, we find

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)
Therefore, substituting into eq.(1) we find the force of friction:

Where the negative sign means the direction of the force is opposite to the motion of the box.
The fast sports car does more damage then the slow semi truck
Answer:
a
The number of fringe is z = 3 fringes
b
The ratio is 
Explanation:
a
From the question we are told that
The wavelength is 
The distance between the slit is 
The width of the slit is 
let z be the number of fringes that appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit pattern is and this mathematically represented as

Substituting values
z = 3 fringes
b
From the question we are told that the order of the bright fringe is n = 3
Generally the intensity of a pattern is mathematically represented as
![I = I_o cos^2 [\frac{\pi d sin \theta}{\lambda} ][\frac{sin (\pi a sin \frac{\theta}{\lambda } )}{\pi a sin \frac{\theta}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%5B%5Cfrac%7B%5Cpi%20d%20sin%20%5Ctheta%7D%7B%5Clambda%7D%20%5D%5B%5Cfrac%7Bsin%20%28%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%20%7D%20%29%7D%7B%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%7D%20%7D%20%5D)
Where
is the intensity of the central fringe
And Generally 
![I = I_o co^2 [ \frac{\pi (\frac{n \lambda}{d} )}{\lambda} ] [\frac{\frac{sin (\pi a (\frac{n \lambda}{d} ))}{\lambda} }{\frac{\pi a (\frac{n \lambda}{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20co%5E2%20%5B%20%5Cfrac%7B%5Cpi%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%5D%20%5B%5Cfrac%7B%5Cfrac%7Bsin%20%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%7D%7B%5Cfrac%7B%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (n \pi)[\frac{\frac{sin(\pi a (\frac{n \lambda}{d} ))}{\lambda} )}{ \frac{ \pi a (\frac{n \lambda }{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%28n%20%5Cpi%29%5B%5Cfrac%7B%5Cfrac%7Bsin%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%29%7D%7B%20%5Cfrac%7B%20%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%20%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (3 \pi) [\frac{sin (\frac{3 \pi }{6} )}{\frac{3 \pi}{6} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%283%20%5Cpi%29%20%5B%5Cfrac%7Bsin%20%28%5Cfrac%7B3%20%5Cpi%20%7D%7B6%7D%20%29%7D%7B%5Cfrac%7B3%20%5Cpi%7D%7B6%7D%20%7D%20%5D)

