You have to find the calculate<span> the circumference first then you can just multiply the diameter by π, which is about 3.142. That gives you the distance for each </span>revolution<span>. Then you can multiply by the </span>number of revolutions<span> per minute.
</span>
Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field
Answer:
he formula for the gravitational force includes the gravitational constant, which has a value . The unit of the gravitational force is Newtons (N). Fg = gravitational force between two objects ( ) G = gravitational constant ( ) m1 = mass of the first object (kg)
Explanation:
brainlist ?
Uneven heating of land and sea causes warm air over land to rise up, creating a low pressure zone. So wind blows in from the sea to fill this low pressure zone
Answer:
Explanation: When the electrons move in another direction, they convert this chemical potential energy to electricity in the circuit, thus discharging the battery. So, the battery is all potential energy.