1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
14

Define Momentum in detail.

Physics
2 answers:
Harrizon [31]3 years ago
8 0

Explanation:

Momentum Is defined as the product of of mass and its velocity

Momentum (M) =mass *velocity

SI unit of momentum is kgm/s

The rate of change in momentum

=change in momentum / time

=(mv-mu)/t

blsea [12.9K]3 years ago
7 0

Answer:

Momentum is simply the product of mass and velocity. It is represented mathematically as

Momentum = Mass x Velocity.

The S. I unit of momentum is kilograms meter per second i.e Kg.m/s.

Momentum is a vector quantity i.e it has both magnitude and direction.

Momentum of an object is greatly affected my the mass and velocity of the object as we can clear from the equation.

You might be interested in
Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the di
vekshin1

Here is the full question

Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the disk of the galaxy, about how far (on average) would it be to the nearest civilization?

(Hint: Start by finding the area of the Milky Way's disk, assuming that it is circular and 100,000 light-years in diameter. Then find the average area per civilization, and use the distance across this area to estimate the distance between civilizations.)

Answer:

1000 light-years (ly)

Explanation:

If we go by the hint; The area of the disk can be expressed as:

A = \pi (\frac{D}{2})^2

where D = 100, 000 ly

Let's divide the Area by the number of civilization; if we do that ; we will be able to get 'n' disk that is randomly distributed; so ;

d= \frac{A}{N} =\frac{\pi (\frac{D}{2})^2 }{10, 000}

The distance between each disk is further calculated by finding the radius of the density which is shown as follows:

d = \pi r^2 e

r^2_e= \frac{d}{\pi}

r_e = \sqrt{\frac{d}{\pi} }

replacing d = \frac{\pi (\frac{D}{2})^2 }{10, 000} in the equation above; we have:

r_e = \sqrt{\frac{\frac{\pi (\frac{D}{2})^2 }{10, 000}}{\pi} }

r_e = \sqrt{\frac{(\frac{D}{2})^2 }{10, 000}}

r_e = \sqrt{\frac{(\frac{100,000}{2})^2 }{10, 000}}

r_e = 500 ly

The distance (s) between each civilization = 2(r_e)

= 2 (500 ly)

= 1000 light-years (ly)

4 0
3 years ago
Helppppppp meeee plleeeassee
spin [16.1K]

Answer:

balanced , balanced , unbalanced, unbalanced, balanced, balanced, unbalanced

Explanation: you're welcome

8 0
3 years ago
Read 2 more answers
A mercury thermometer is used to measure the temperature of boiling water.<br>Why?​
Rama09 [41]

Answer:

It has very high density, so a small bulb of a thermometer can contain much mercury. Mercury remains liquid state over a quite wide range of temperature because it freezes at 39°C and boils at 357°C.

Explanation:

6 0
3 years ago
The drag force that resists the motion of a car traveling at 80 km h^- 1 is 300 N.
kobusy [5.1K]

The power require to keep the car traveling is 6,666 W.

The power of the engine at the given efficiency is 3,999.6 W.

<h3>What is Instantaneous power?</h3>

This the product of force and velocity of the given object.

The power require to keep the car traveling is calculated as follows;

P = Fv

P = 300\ N \ \times  \ \frac{80 \ kmh^{-1}}{3.6 \ km h^{-1}/m/s} \\\\&#10;P = 300 \ N \times 22.22 \ m/s\\\\&#10;P = 6,666 \ W

The power of the engine at the given efficiency is calculated as follows;

E = \frac{P_{out}}{P _{in}} \times 100\%\\\\&#10;60\% = \frac{P_{out}}{6,666} \times 100\%\\\\&#10;0.6 = \frac{P_{out}}{6,666} \\\\&#10;P_{out} = 3,999.6 \ W

Learn more about efficiency here: brainly.com/question/15418098

8 0
2 years ago
Water enters a baseboard radiator at 180 °F and at a flow rate of 2.0 gpm. Assuming the radiator releases heat into the room at
beks73 [17]

Answer:

Temperature of water leaving the radiator = 160°F

Explanation:

Heat released = (ṁcΔT)

Heat released = 20000 btu/hr = 5861.42 W

ṁ = mass flowrate = density × volumetric flow rate

Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³

ṁ = 1000 × 0.000126 = 0.126 kg/s

c = specific heat capacity for water = 4200 J/kg.K

H = ṁcΔT = 5861.42

ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C

And in change in temperature terms,

10°C= 18°F

11.08°C = 11.08 × 18/10 = 20°F

ΔT = T₁ - T₂

20 = 180 - T₂

T₂ = 160°F

8 0
3 years ago
Other questions:
  • WILL MARK BRAINLIEST!
    12·1 answer
  • The average speed of a car that travels 500 km in 5 hours is
    7·1 answer
  • Air is colorless, odorless, and tasteless. describe one way that air can be shown to exist.
    10·1 answer
  • Which explains why more energy is released in nuclear reactions then in chemical reactions
    8·1 answer
  • Why nucleus density is constant. Explain
    8·1 answer
  • An oscillating object takes 0.10 s to complete one cycle; that is, its period is 0.10 s. what is its frequency f? express your a
    12·1 answer
  • As your rockets went upwards how would you describe how the energies changed?
    6·1 answer
  • A total of 25.6 kJ of heat energy is added to a 5.46 L sample of helium at 0.991 atm. The gas is allowed to expand against a fix
    9·1 answer
  • A spatially challenged goldfish swims along the x-axis only. Its initial position is 7.8 m. After swimming back and forth a whil
    13·1 answer
  • What does the geology of the two continents indicate about past events in Earth history?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!