Conductors (something that allows electricity to flow easily) allow for electricity to flow easily. This would be the wires. If you don't have conductors, then you cannot have electricity flow.
Insulators (something that doesn't allow electricity to flow through it) is important because it allows us to be able to touch the cables or place them next to one another and not shock ourselves
Hope this helps
Answer: Their final relative velocity is -0.412 m/s.
Explanation:
According to the law of conservation,

Putting the given values into the above formula as follows.



v = 
= -0.412 m/s
Thus, we can conclude that their final relative velocity is -0.412 m/s.
<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
Answer: Choose the normal force acting between the object and the ground. Let's assume a normal force of 250 N.
Determine the friction coefficient.
Multiply these values by each other: 250 N * 0.13 = 32.5 N .
You just found the force of friction!
Explanation: