Answer:
THE ANSWER WILL BE...
NOTE : Just substitute the x and y variable with (-6,-60) and you will see I am right.
Example:
-60= 10(-6)
<em><u>Please mark as brainliest</u></em>
Have a great day, be safe and healthy
Thank u
XD
The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
The given system of equations:
x + 2y = 1............(1)
-3x - 2y = 5..........(2)
This can be written in matrix form as shown:
![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Find the determinant of ![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D)

![\triangle_x = \left[\begin{array}{ccc}1&2\\5&-2\end{array}\right]\\\triangle_x = 1(-2)-2(5)\\\triangle_x = -2-10\\\triangle_x =-12](https://tex.z-dn.net/?f=%5Ctriangle_x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_x%20%3D%201%28-2%29-2%285%29%5C%5C%5Ctriangle_x%20%3D%20-2-10%5C%5C%5Ctriangle_x%20%3D-12)
![\triangle_y = \left[\begin{array}{ccc}1&1\\-3&5\end{array}\right]\\\triangle_y = 1(5)-1(-3)\\\triangle_y = 5 + 3\\\triangle_y =8](https://tex.z-dn.net/?f=%5Ctriangle_y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C-3%265%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_y%20%3D%201%285%29-1%28-3%29%5C%5C%5Ctriangle_y%20%3D%205%20%2B%203%5C%5C%5Ctriangle_y%20%3D8)


The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
Learn more here: brainly.com/question/4428059
Answer:
two real, unequal roots
Step-by-step explanation:
This is a quadratic equation. The quadratic formula can be used to determine how many and what kind of roots may exist:
Find the discriminant, which is defined as b^2 - 4ac, if ax^2 + bx + c = 0. In this case, a = 1, b = -2 and c = -8, so that the discriminant value is
(-2)^2 - 4(1)(-8), or 4 + 32 = 36.
Because the discriminant is real and positive, we know for certain that we have two real, unequal roots