Volume=4/3 pi r^3. so 4/3 pi r^3 = 500/3 pi. Therefore, divide by pi, and multiply by 3, you get 4r^3=500. Divide by 4 to get r^3=125, and cube root to result in 25. r=25.
It moves to the left no matter what it is, but i’m not sure how many bec there’s not alr a decimal
Answer:
125,000
Step-by-step explanation:
Take the Japanese yen and divide by 12
1,500,000 divided by 12 = 125,000
Answer:
y=29
Step-by-step explanation:
y=5+6(4)
y=5+24
y=29
BRAINLIEST PLZ
All three series converge, so the answer is D.
The common ratios for each sequence are (I) -1/9, (II) -1/10, and (III) -1/3.
Consider a geometric sequence with the first term <em>a</em> and common ratio |<em>r</em>| < 1. Then the <em>n</em>-th partial sum (the sum of the first <em>n</em> terms) of the sequence is

Multiply both sides by <em>r</em> :

Subtract the latter sum from the first, which eliminates all but the first and last terms:

Solve for
:

Then as gets arbitrarily large, the term
will converge to 0, leaving us with

So the given series converge to
(I) -243/(1 + 1/9) = -2187/10
(II) -1.1/(1 + 1/10) = -1
(III) 27/(1 + 1/3) = 18