Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
Answer:
The 3p orbitals have the same general shape and are larger than 2p orbitals, but they differ in the number of nodes. You have probably noticed that the total number of nodes in an orbital is equal to n−1 , where n is the principal quantum number. Thus, a 2p orbital has 1 node, and a 3p orbital has 2 nodes.
Answer:
The water soluble substance which absorb moisture from the air and then dissolve on the absorbed moisture to change into liquid taste are called deliquescent substances whereas the substances which absorb moisture from air but do not change their state are called hygroscopic substances.
Explanation:
Given problem:
Find the molar mass of:
SO₃ and C₁₀H₈
Solution:
The molar mass of a compound is the mass in grams of one mole of the substance.
To solve this, we are going to add the individual atomic masses of the elements in the compound;
Atomic mass;
S = 32g/mol; O = 16g/mol; C = 12g/mol and H = 1g/mol
For SO₃;
= 32 + 3(16)
= 32 + 48
= 80g/mol
For C₁₀H₈
= 10(12) + 8(1)
= 120 + 8
= 128g/mol