The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.
Answer: Neutron has no charge, electron has a charge and mass. Neutron occurs inside the nucleus where electron is seen outside the nucleus.
Explanation:
V
1
/T
1
=V
2
/T
2
(900.0 mL) / (300.0 K) = (x) / (405.0 K); x = 1215 mL.
Change the 900 to 800, and the 300 to 27, then change the 405 to 132. And solve
Answer:
points
Explanation: suggest watching a video
Answer:
The main difference between the two models is <em>the position of the electron in the atom</em>.
Explanation:
- <em>Bohr model:</em> The electrons are moved around the nucleus in circular definite paths (orbitals or shells). Also, he could not find or detect the exact position of electron.
- <em>Electron cloud model:</em> It is supposed by Erwin Schrodinger. He showed that the emission spectra of the atom is the way to detect the probability of electron position.