Answer:
C. liquid to a gas
Explanation:
I know this is right but I don't have an explanation
Answer:
the Molar heat of Combustion of diphenylacetylene
= 
Explanation:
Given that:
mass of diphenylacetylene
= 0.5297 g
Molar Mass of diphenylacetylene
= 178.21 g/mol
Then number of moles of diphenylacetylene
= 
= 
= 0.002972 mol
By applying the law of calorimeter;
Heat liberated by 0.002972 mole of diphenylacetylene
= Heat absorbed by
+ Heat absorbed by the calorimeter
Heat liberated by 0.002972 mole of diphenylacetylene
= msΔT + cΔT
= 1369 g × 4.184 J g⁻¹°C⁻¹ × (26.05 - 22.95)°C + 916.9 J/°C (26.05 - 22.95)°C
= 17756.48 J + 2842.39 J
= 20598.87 J
Heat liberated by 0.002972 mole of diphenylacetylene
= 20598.87 J
Heat liberated by 1 mole of diphenylacetylene
will be = 
= 6930979.139 J/mol
= 6930.98 kJ/mol
Since heat is liberated ; Then, the Molar heat of Combustion of diphenylacetylene
= 
Your answer would be 58.12g/mol ;)
Given:
Concentration of titrant = 0.1000 M
Volume of titrant = 45 mL
The molarity of analyte depends on the amount of the analyte present in the titrated solution. If the amount of analyte is 20 mL, then its concentration is:
45ml * 0.10 M = C analyte * 20 ml
C analyte = 0.225 M