Answer:
133.62 kmh.
Explanation:
Time provided = 3.25 hours.
Distance to be covered 300 km
Times spent in first 100 km = 1 hour
Time spent in next 43 km
= 43 / 40 = 1.075 hours
Total time spent = 2.075 hours
Total distance covered = 143 km
Distance remaining = 300 - 143
=157 km .
Time remaining = 3.25 - 2.075
= 1.175
Speed required = Distance remaining / time remaining
= 157 / 1.175
= 133.62 kmh.
How much heat<span> is </span>required<span> to </span>heat 0.1 g<span> of </span>∆hvap<span> =</span>2260 j/g ∆h<span> =</span>340j/g fus iceat−30 ctosteamat 100c?use<span> the </span>approximate values<span>?</span>
The answer I'm pretty sure is 3
To solve this problem we must resort to the Work Theorem, internal energy and Heat transfer. Summarized in the first law of thermodynamics.

Where,
Q = Heat
U = Internal Energy
By reference system and nomenclature we know that the work done ON the system is taken negative and the heat extracted is also considered negative, therefore
Work is done ON the system
Heat is extracted FROM the system
Therefore the value of the Work done on the system is -158.0J