Answer:
Explanation:
The way to show a cubed substance is either like this³ or like this x^3. The small three is found at the bottom toolbar at the bottom of the question space marked by the Ω symbol.
100 mmHg
Givens
V1 = 20 cm^3
V2 = 80 cm^3
P1 = 400 mmHg
P2 = ?
Formula
V1 * P1 = V2 * P2
Solution
20 * 400 = 80 * P2 Divide by 80
20 * 400/80 = P2
P2 = 8000 / 80
P2 = 100 mmHg
They are all coverd in water 24/7 they never clear up
Answer:
1.5024
Explanation:
Draw a diagram. Put the two cells in series. Now draw 3 resistors. Two of them equal 0.26 ohms each. The third one is the lightbulb which is 12 ohms.
R = 0.26 + 0.26 + 12 = 12.52
The bulb has a voltage of 2.88 volts across it. You can get the current from that.
i = E / R
i = 2.88 / 12 =
i = 0.24 amps.
Now you can get the voltage drop across the two cells.
E = ?
R = 0.26
i = 0.24 amps
E = 0.26 * 0.24
E = 0. 0624
Finally divide the 2.88 by 2 to get 1.44
Each cell has an emf of 1.44 + 0.0624 = 1.5024
The presence of helium gas indicates the radioactive sample is most likely decaying by α-decay, or alpha decay. α-decay is the type of radioactive decay in which an atomic nucleus emits α particles. α particles are Helium nuclei. So the correct answer would be α-decay.
<u>The possible formulas for impulse are as follows:</u>
J = FΔt
J = mΔv
J = Δp
Answer: Option A, E and F
<u>Explanation:</u>
The quantity which explains the consequences of a overall force acting on an object (moving force) is known as impulse. It is symbolised as J. When the average overall force acting on an object than such products are formed and in given duration than the start fraction force over change in time end fraction J = FΔt.
The impulse-momentum theorem explains that the variation in momentum of an object is same as the impulse applied to it: J = Δp J = mΔv if mass is constant J = m dv + v dm if mass changes. Logically, the impulse-momentum theorem is equivalent to Newton second laws of motion which is also called as force law.