The enthalpy change of the reaction below (ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
The bond energies data is given as follows:
BE for C≡O = 1072 kJ/mol
BE for Cl-Cl = 242 kJ/mol
BE for C-Cl = 328 kJ/mol
BE for C=O = 766 kJ/mol
The enthalpy change for the reaction is given as :
ΔHr×n = ∑H reactant bond - ∑H product bond
ΔHr×n = ( BE C≡O + BE Cl-Cl) - ( BE C=O + BE 2 × Cl-Cl )
ΔHr×n = ( 1072 + 242 ) - ( 766 + 656 )
ΔHr×n = 1314 - 1422
ΔHr×n = - 108 kJ
Thus, The enthalpy change of the reaction below ( ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
To learn more about enthalpy here
brainly.com/question/13981382
#SPJ1
Answer:
1: At temperatures below 542.55 K
2: At temperatures above 660 K
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the Gibbs free energy, it is possible to write the following expression:

Whereas ΔG=0 for the spontaneous transition. In such a way, we proceed as follows:
1:

It means that at temperatures lower than 542.55 K the reaction will be spontaneous.
2:

It means that at temperatures higher than 660 K the reaction will be spontaneous.
Best regards!
According to Raoult's law the relative lowering of vapour pressure of a solution made by dissolving non volatile solute is equal to the mole fraction of the non volatile solute dissolved.
the relative lowering of vapour pressure is the ratio of lowering of vapour pressure and vapour pressure of pure solvent

Where
xB = mole fraction of solute=?

p = 22.8 torr

mole fraction is ratio of moles of solute and total moles of solute and solvent
moles of solvent = mass / molar mass = 500 /18 = 27.78 moles
putting the values




mass of glucose = moles X molar mass = 1.218 X 180 = 219.24 grams
D = m/ V
8.9 = 3 / V
V = 3 / 8.9
V = 0.3 cm³
Answer A
hope this helps!
Answer : The temperature of liquid is, 369.9 K
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of liquid at 373 K = 681 torr
= vapor pressure of liquid at normal boiling point = 760 torr
= temperature of liquid = ?
= normal boiling point of liquid = 373 K
= heat of vaporization = 40.7 kJ/mole = 40700 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the temperature of liquid is, 369.9 K