Answer:
- 6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Explanation:
<em>Photosynthesis</em> is the chemical process carried out by plants for the conversion of inorganic matter (carbon dioxide and water) into organic matter (glucose) with the release of oxygen, using light (sun energy).
So the chemical process may be represented by:
carbon dioxide + water + sun energy → glucose + oxygen
- <u>Skeleton equation:</u>
CO₂ + H₂O + sun energy → C₆H₁₂O₆ + O₂
- <u>Balanced chemical equation:</u>
6CO₂ + 6H₂O + sun energy → C₆H₁₂O₆ + 6O₂
- <u>Supressing the energy to show only the chemical compounds:</u>
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Answer:
Cl
Explanation:
The element Cl will have the strongest ionization energy from the given choices. Most non-metals have higher ionization energy compared to metals.
Ionization energy is the energy required to remove the most loosely held electron from the gaseous phase of an atom.
- As you go from left to right on the periodic table, it increases progressive
- From top to bottom, the ionization energy reduces significantly.
- The attractive force between the protons in the nucleus and the electrons plays a very important role.
- In metals, they have very large atomic radius, the attractive force on the outer electrons is very weak.
- This is not the case in non-metals
To find the empirical formula you would first need to find the moles of each element:
58.8g/ 12.0g = 4.9 mol C
9.9g/ 1.0g = 9.9 mol H
31.4g/ 16.0g = 1.96 O
Then you divide by the smallest number of moles of each:
4.9/1.96 = 2.5
9.9/1.96 = 6
1.96/1.96 = 1
Since there is 2.5, you find the least number that makes each moles a whole number which is 2.
So the empirical formula is C5H12O2.
Please correct me if I'm wrong but I think the answer is b or c
also sorry if i do get it wrong