The Lyman series can be expressed in the formula <span><span>1/λ</span>=<span>RH</span><span>(1−<span>1/<span>n2</span></span>) where </span><span><span>RH</span>=1.0968×<span>107</span><span>m<span>−1</span></span>=<span><span>13.6eV</span><span>hc
</span></span></span></span>Where n is a natural number greater than or equal to 2 (i.e. n = 2,3,4,...). Therefore, the lines seen in the image above are the wavelengths corresponding to n=2 on the right, to n=∞on the left (there are infinitely many spectral lines, but they become very dense as they approach to n=∞<span> (Lyman limit), so only some of the first lines and the last one appear).
The wavelengths (nm) in the Lyman series are all ultraviolet
:2 3 4 5 6 7 8 9 10 11
Wavelength (nm) 121.6 102.6 97.3 95 93.8 93.1 92.6 92.3 92.1 91.9 91.18 (Lyman limit)
In your case for the n=5 line you have to replace "n" in the above formula for 5 and you should get a value of 95 x 10^-9 m for the wavelength. then you have to use the other equation that convert wavelength to frequency. </span>
The answer to this question would be: <span>1) Electrons occupy regions of space
</span><span>
In plum pudding model, the atoms are drawn as pudding and the negative particle is spread around the pudding. In this model, the electron is spread but not moving in orbit. Rutherford model that comes afterward is the one that says most of the atoms is empty space.</span>
Answer:
A compound is a unique substance that forms when two or more elements combine chemically. Compounds form as a result of chemical reactions. The elements in compounds are held together by chemical bonds. A chemical bond is a force of attraction between atoms or ions that share or transfer valence electrons
<h3><u>Answer</u>;</h3>
a. 3 molecules 3 carbon
b. 6 molecules 18 carbon
c. 6 molecules 18 carbon
d. 5 molecules 15 carbon
e. 3 molecules 15 carbon
f. 3 molecules 15 carbon
<h3><u>Explanation</u>;</h3>
- In the Calvin cycle, carbon atoms from CO2 are ncorporated into organic molecules and then used to build three-carbon sugars, a process that is fueled by, and dependent on, ATP and NADPH from the light reactions.
- Calvin cycle take place in the stroma. Reactions of Calvin cycle are divided into three main stages: carbon fixation, reduction, and regeneration of the starting molecule.
- During carbon fixation, a CO2 molecule combines with a five carbon acceptor molecule ribulose-1,5-bisphosphate. The result is a six carbon compound that splits to two three carbon compound, 3-PGA.
- During reduction; ATP and NADPH are used to convert the 3-PGA molecules into molecules of a three-carbon sugar, glyceraldehyde-3-phosphate.
- Finally during regeneration, some G3P molecules are used to make glucose while others are recycled to regenerate RuBP acceptor.