Answer: 14. 49 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the horizontal distance between the cannon and the ball
is the cannonball initial velocity
since the cannonball was shoot horizontally
is the time
is the final height of the cannonball
is the initial height of the cannonball
is the acceleration due gravity
Isolating
from (2):
(3)
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
Answer:
Thank you so much! Have a great day!
Answer:
Formation of new elements
Explanation:
Answer:
The system loses 90 kJ of heat
Explanation:
We can answer the question by using the 1st law of thermodynamics, which states that:

where
is the change in internal energy of the system
is the heat absorbed by the system (positive if absorbed, negative if released by the system)
is the work done by the system (positive if done by the system, negative if done by the surrounding on the system)
In this problem, we have:
is the work done (negative, because it is done by the surrounding on the system)
is the increase in internal energy
Using the equation above, we can find Q, the heat absorbed/released by the system:

And the negative sign means that the system has lost this heat.
Answer:
289282
Explanation:
r = Radius of plate = 0.52 mm
d = Plate separation = 0.013 mm
A = Area = 
V = Potential applied = 2 mV
k = Dielectric constant = 40
= Electric constant = 
Capacitance is given by

Charge is given by

Number of electron is given by

The number of charge carriers that will accumulate on this capacitor is approximately 289282.