Answer:
The spring constant = 9.25 N/m
Explanation:
The equation of an object attached to a spring that is oscillating is
T = 2π√(m/k)
Where T = period of the oscillation, m = mass of the object, k = spring constant.
Making k the subject of the equation,
k = 4π²m/T²......................... Equation 1
Note: Period(T) is the time taken to complete one oscillation
Given: T = t/10 = 9.0/10 = 0.9 s, m = 190 g = 0.19 kg.
Constant: π = 3.14
Substitute these values into equation 1.
k = 4(3.14)²(0.19)/0.9²
k = 7.4933/0.81
k = 9.25 N/m
Thus the spring constant = 9.25 N/m
The pilot might be correct (I think), because, if the gravity of the planet is strong, then the planet’s gravity will pull the spaceship into its orbit, so the engines don’t need to be on for the ship to get pushed toward the planet.
Rubber is a insulator so current cannot pass through it where as metal is a conductor which allows current to pass through it
Answer:
V = - 0.5 [m/s]
Explanation:
In order to solve this problem, we must use the principle of relative speeds. This is for an observer who is on the edge of the river he can see how the river moves to the left and the woman tries to move to the right but can not since:
![V_{total}=-3+2.5\\V_{total}=-0.5 [m/s]](https://tex.z-dn.net/?f=V_%7Btotal%7D%3D-3%2B2.5%5C%5CV_%7Btotal%7D%3D-0.5%20%5Bm%2Fs%5D)
That is, the person sees how the woman moves to the left but with avelocity of 0.5 [m/s] to the left