They are Acids
when acids are in water they dissociate and release H+ ions into the water
while bases release OH- ions
hope that helps
<span><span>N2</span><span>O5</span></span>
Explanation!
When given %, assume you have 100 g of the substance. Find moles, divide by lowest count. In this case you'll end up with
<span><span>25.92 g N<span>14.01 g N/mol N</span></span>=1.850 mol N</span>
<span><span>74.07 g O<span>16.00 g O/mol O</span></span>=4.629 mol O</span>
The ratio between these is <span>2.502 mol O/mol N</span>, which corresponds closely with <span><span>N2</span><span>O5</span></span>.
The answer is baking a cake.
We assume that we have Ka= 4.2x10^-13 (missing in the question)
and when we have this equation:
H2PO4 (-) → H+ + HPO4-
and form the Ka equation we can get [H+]:
Ka= [H+] [HPO4-] / [H2PO4] and we have Ka= 4.2x10^-13 & [H2PO4-] = 0.55m
by substitution:
4.2x10^-13 = (z)(z)/ 0.55
z^2 = 2.31x 10^-13
z= 4.81x10^-7
∴[H+] = 4.81x10^-7
when PH equation is:
PH= -㏒[H+]
= -㏒(4.81x10^-7) = 6.32