Answer:
Electrons move through the wires in the opposite direction.
Explanation:
The direction of an electric current is by convention the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and toward the negative terminal of the battery.
Organic materials continue to be the largest component of MSW. Paper and paperboard account for 27 percent and yard trimmings and food account for another 28 percent. Plastics comprise about 13 percent; metals make up 9 percent; and rubber, leather, and textiles account for 9 percent.
Answer:
F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)
Explanation:
Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:
F=K*q₁*q₂/d² Formula (1)
F: Electric force in Newtons (N)
K : Coulomb constant in N*m²/C²
q₁,q₂:Charges in Coulombs (C)
d: distance between the charges in meters(m)
Equivalence
1nC= 10⁻⁹C
Data
K=8.99x10⁹N*m²/C²
q₁ = 7.94-nC= 7.94*10⁻⁹C
q₂= 4.14-nC= 4.14 *10⁻⁹C
d= 1.77 m
Magnitude of the electrostatic force that one charge exerts on the other
We apply formula (1):

F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)
Answer:
After finding the electric potential VP at point P = Q/Чπϵ₀L ㏑(1+
)
Explanation:
I believe it is a part C question.
The derivative of V and P will be directly proportional to the differential dq and the inverse of Чπϵ₀δ........
Please find detailed solution in the attached picture as i believe that is the answer to the part C question you are seeking for.
Answer:
none of the above
Explanation:
The actual answer is '91 protons'. In fact, the beta decay of the thorium-234 is the following:

where inside the nucleus of Thorium (90 protons), a neutron turns into an electron (the beta particle) + a proton. Therefore, the resulting nucleus (which is Protoactinium) has a total of 90+1 = 91 protons.
So, the correct answer would be '91 protons'.