-- Top picture:
'a' and 'b' have the same magnitude, and both are positively charged.
-- Bottom picture:
The charge on the particle is negative.
Answer:
6.71 × 10^8 mi/hr
Explanation:
Light is usually defined as an electromagnetic wave that is comprised of a definite wavelength. It is of both types, visible and invisible. The light emitted from a source usually travels at a speed of about 3 × 10^8 meter/sec. This speed of light is commonly represented by the letter 'C'.
To write it in the metric system, it has to be converted into miles/hour.
We know that,
1 minute = 60 seconds
60 minutes = 1 hour
1 kilometer = 1000 meter
1 miles = 1.6 kilometer
Now,
= 
= 1.08 × 10^12 m/ hr (meter/hour)
= 
= 6.71 × 10^8 mi/hr (miles/hour)
Thus, the value for speed of light (C) in metric unit is 6.71 × 10^8 mi/hr.
Explanation:

power = Force × distance /time
power = 944N × 12.4m/36secs
power = (944×12.4/36)Nms—¹
power = 390.2Nms—¹ or 390.2Watts or 390.2Js—¹
Answer:
The Roche limit for the Moon orbiting the Earth is 2.86 times radius of Earth
Explanation:
The nearest distance between the planet and its satellite at where the planets gravitational pull does not torn apart the planets satellite is known as Roche limit.
The relation to determine Roche limit is:
....(1)
Here
is radius of planet and
are density of planet and moon respectively.
According to the problem,
Density of Earth,
= 5.5 g/cm³
Density of Moon,
= 3.34 g/cm³
Consider
be the radius of the Earth.
Substitute the suitable values in the equation (1).
![Roche\ limit=2.423\times R_{E}\times\sqrt[3]{\frac{5.5 }{3.34 } }](https://tex.z-dn.net/?f=Roche%5C%20limit%3D2.423%5Ctimes%20R_%7BE%7D%5Ctimes%5Csqrt%5B3%5D%7B%5Cfrac%7B5.5%20%7D%7B3.34%20%7D%20%7D)

It's kinetic energy as the ball the ball isn't raised above the ground it does not have any gravitational potential energy.
To find the kinetic energy of the ball you will have to use the formula:
KE=0.5 x m x v squared
m being mass and v being velocity
so the calculation is:
0.5 x 2 x 10 x 10= 100J