I think the land for it represents a DUNE
AgF consists of Ag+ and F- ions, which are fully dissociated in aqueous solution. When solving electrolysis problems, it is important to remember that water itself may also be a subject to electrolysis. Therefore, determining which species is oxidized and which species is reduced depends on selecting the processes that are the most energetically favorable. The most preferred reduction reaction will be Ag+ + e- = Ag (Emf=0.7996 V) which will occur at the cathode, on the other hand, the most favorable oxidation reaction will be
2H2O = O2 +4H+ + 4e- (Emf = -1.3 V) that will occur at the anode. Thus, the product at the anode is oxygen gas and at the cathode electrode is silver metal.
Answer:
The pH of a solution of 0.00278 M of HClO₄ is 2.56
Explanation:
pH is a measure of acidity or alkalinity that indicates the amount of hydrogen ions present in a solution or substance and is calculated as:
pH= - log [H⁺]= - log [H₃O⁺]
On the other hand
, a Strong Acid is that acid that in an aqueous solution dissociates completely. In other words, a strong acid completely dissociates into hydrogen ions and anions in solution.
HClO₄ is a strong acid, so in aqueous solution it will be totally dissociated. Then, the concentration of protons is equal to the initial concentration of acid and the pH will be calculated:
pH= - log 0.00278
pH= 2.56
<u><em>The pH of a solution of 0.00278 M of HClO₄ is 2.56</em></u>
It would be A, the molecules should be closely packed together but arranged randomly. :)
An aldehyde is an organic compound containing a terminal carbonyl group (C = O). This functional group, consisting of a carbon atom bound to a hydrogen atom and an oxygen atom via double bond (the general formula: CHO) is called the aldehyde group. In a reaction of the addition of alcohol to the carbonyl group, it forms hemiacetals.
On the picture attached it is shown the reaction of alcohol addition to the carbonyl group with the major organic product <span>formed in the reaction.</span>