Answer:
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Explanation:
Recall that , depression present in freezing point is calculated with the formulae = solute particles Molarity x KF
0.3473 = m * 1.86
Solving, m = 0.187 m
Moles of HClO2 = mass / molar mass = 5.85 / 68.5 = 0.0854 mol
Molality = moles / mass of water in kg = 0.0854 / 1 = 0.0854 m
Initial molality
Assuming that a % x of the solute dissociates, we have the ICE table:
HClO2 H+ + ClO2-
initial concentration: 0.0854 0 0
final concentration: 0.0854(1-x/100) 0.0854x/100 0.0854x / 100
We see that sum of molality of equilibrium mixture = freezing point molality
0.0854( 1 - x/100 + x/100 + x/100) = 0.187
2.1897 = 1 + x / 100
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Atoms
Explanation:
Chemical bonds results from the rearrangement of atoms in a chemical species.
It deals with the various attractive forces joining chemical species togethe.
- When atoms are re-arranged, they form chemical bonds that leads to production of new compounds.
- This is made possible by the exchange or sharing of electrons.
- The driving force for most interatomic bonding is the tendency to have completely filled outer energy levels like the noble gases.
- When atoms are re-arranged in compounds they lead to the production of chemical bonds.
learn more:
Ionic bonds brainly.com/question/6071838
#learnwithBrainly
I believe the statement above is true. The stronger the wind, the larger the particles it erodes<span>. The stronger the wind, the larger the particles that are carried away.
</span>
Answer: Total pressure inside of a vessel is 0.908 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual partial pressures. exerted by each gas alone.

= partial pressure of nitrogen = 0.256 atm
= partial pressure of helium = 203 mm Hg = 0.267 atm (760mmHg=1atm)
= partial pressure of hydrogen =39.0 kPa = 0.385 atm (1kPa=0.00987 atm)
Thus 
=0.256atm+0.267atm+0.385atm =0.908atm
Thus total pressure (in atm) inside of a vessel is 0.908
Answer:
43.72
Explanation:
that is the answer hope u liked it and I did this already along time ago