Answer:
The ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Explanation:
In order to solve this problem we must first start by doing a drawing that will represent the situation. (See picture attached).
We can see in the picture that the least the angle the farther the ball will go. So we need to find the A and B position to determine how farther the second shot would go. Let's start with point A.
So, first we need to determine the components of the velocity of the ball, like this:






we pick the positive one, so it takes 0.317s for the ball to hit on point A.
so now we can find the distance from the net to point A with this time. We can find it like this:



Once we found the distance between the net and point A, we can similarly find the distance between the net and point B:







t= -0.9159s or t=0.468s
we pick the positive one, so it takes 0.468s for the ball to hit on point B.
so now we can find the distance from the net to point B with this time. We can find it like this:



So once we got the two distances we can now find the difference between them:

so the ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Answer:
Explanation:
To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.
To add the two vectors analytically you decompose each vector into their vertical and horizontal components.
<u>1. 18 mph 327º</u>
- Horizontal component: 18 mph × cos (327º) = 15.10 mph
- Vertical component: 18 mph × sin (327º) = - 9.80 mph

<u>2. 4 mph 60º</u>
- Horizontal component: 4 mph × cos (60º) = 2.00 mph
- Vertical component: 4 mph × sin (60º) = 3.46 mph

<u>3. Addition:</u>
You add the corresponding components:

To find the magnitude use Pythagorean theorem:
<u>4. Direction:</u>
Use the tangent ratio:
Find the inverse:
BecausE the first 'a' is used with a 'u' making a "ahh" sound
The second 'a' isn't paired with any other vowels so it's sound is a strong A sound
And the 'a' at the end is paired with an 'i' in front of it making an "ee-uhh" sound
plz rate me lol i tried <3
Explanation:
7) Given:
v₀ = 2.0 m/s
v = 0 m/s
t = 3.00 s
Find: Δx
Acceleration isn't included in the problem, so use a kinematic equation that doesn't involve a.
Δx = ½ (v + v₀) t
Δx = ½ (0 m/s + 2.0 m/s) (3.00 s)
Δx = 3.0 m
8) Given:
v₀ = 0 m/s
v = 5 m/s
t = 4 s
Find: a
Displacement isn't included in the problem, so use a kinematic equation that doesn't involve Δx.
v = at + v₀
5 m/s = a (4 s) + 0 m/s
a = 1.25 m/s²
9) Given:
v_avg = Δx / t
0.5 m/s = 8 m / t
t = 16 s