The location of the point F that partitions a line segment from D to E (
), that goes from <u>negative 4</u> to <u>positive 5,</u> into a 5:6 ratio is fifteen halves (option 4).
We need to calculate the segment of the line DE to find the location of point F.
Since point D is located at <u>negative -4</u> and point E is at <u>positive 5</u>, we have:

Hence, the segment of the line DE (
) is 9.
Knowing that point F partitions the line segment from D to E (
) into a <u>5:6 ratio</u>, its location would be:
Therefore, the location of point F is fifteen halves (option 4).
Learn more about segments here:
I hope it helps you!
Path for transmitting electric current. An electric circuit includes a device that gives energy to the charged particles constituting the current, such as battery or a generator; devices that use current, such as lamps, electric motors, or computers; and the connecting wires or transmission lines
Answer:
8.46 N/C
Explanation:
Using Gauss law

Gauss's Law states that the electric flux through a surface is proportional to the net charge in the surface, and that the electric field E of a point charge Q at a distance r from the charge
Here, K is Coulomb's constant whose value is 
r = 0.43 + 0.106 = 0.536 m

Answer:
6 m/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 4 m/s
Acceleration (a) = 2 m/s²
Distance (s) = 5 m
Final velocity (v) =?
The final velocity of the object can obtained as shown below:
v² = u² + 2as
v² = 4² + (2 × 2 × 5)
v² = 16 + 20
v² = 36
Take the square root of both side.
v = √36
v = 6 m/s
Therefore, the final speed of the object is 6 m/s.