1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rufina [12.5K]
3 years ago
15

Helppppppppppppppppppp

Physics
1 answer:
hichkok12 [17]3 years ago
4 0

Answer:

100 million step

Explanation:

wish it will help u

You might be interested in
What role did gravity play in the formation of the planets?
joja [24]
Your answer would be D.
If an object has mass, it has gravity, and the more mass it has, the stronger its gravity. During the formation of planets, essentially, various matter and elements pulled and fused together (because of the gravity), forming planetesimals.




3 0
3 years ago
Read 2 more answers
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
Which type of boundary is modeled?
Katena32 [7]
A is convergent
B is
7 0
3 years ago
a mass on a spring vibrates in simple harmonic motion at an amplitude of 8.0 cm. if the mass of the object is 0.20kg and the spr
Reil [10]

Answer:

4.06 Hz

Explanation:

For simple harmonic motion, frequency is given by

f=\frac {1}{2\pi}\times \sqrt{\frac {k}{m}} where k is spring constant and m is the mass of the object.

Substituting 0.2 Kg for mass and 130 N/m for k then

f=\frac {1}{2\pi}\times \sqrt{\frac {130}{0.2}}=4.057670803\\f\approx 4.06 Hz

5 0
3 years ago
A boat is traveling at 80 km/hr. How many hours will it take for the boat to cover a distance of 115 km?
miskamm [114]

Answer:

Explanation:

Givens

d = 115 km

r = 80 km/hr

t = ?

Equation

d = r*T

Solution

115 = 80 * t    Divide by 80

115/80 = t

t = 1.4375 hours.

3 0
3 years ago
Other questions:
  • If a set of displacement vectors laid head to tail make a closed polygon, what is the resultant vector?
    8·1 answer
  • Which expression is dimensionally consistent with anexpression that would yield a value for time-1?(v is velocity, x is distance
    10·1 answer
  • Please help on this one?
    5·1 answer
  • Scientists estimate the rate of a wildebeest running at full speed to be 66 feet per second. Write a function rule to describe t
    5·2 answers
  • A boy is running with a kinetic energy of 810 J. If the boy has a mass of 80 kg, what is his speed?
    10·1 answer
  • What is a black hole
    6·1 answer
  • How many minutes are each half in soccer ?
    15·1 answer
  • At which position is the kinetic energy of a particle executing SHM greatest?
    13·1 answer
  • A body is moving with a uniform acceleration of 2m/s² what does it mean?​
    15·1 answer
  • A car with a mass of 1500 kg is pulled by a rope that is horizontal to the ground. The tension in the rope is 2000 N and a frict
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!