<span>A physical change is any change that alters the form or appearance of a substance but does not change it into another substance
-Some of the physical properties may be altered, but the chemical composition stays the same
-Examples: Bending, Crushing, Cutting, Melting, Freezing, Boiling</span>
Centripetal acceleration points from the object toward the center of the circular path it's traveling.
Answer:
a) {[1.25 1.5 1.75 2.5 2.75]
[35 30 25 20 15] }
b) {[1.5 2 40]
[1.75 3 35]
[2.25 2 25]
[2.75 4 15]}
Explanation:
Matrix H: {[1.25 1.5 1.75 2 2.25 2.5 2.75]
[1 2 3 1 2 3 4]
[45 40 35 30 25 20 15]}
Its always important to get the dimensions of your matrix right. "Roman Columns" is the mental heuristic I use since a matrix is defined by its rows first and then its column such that a 2 X 5 matrix has 2 rows and 5 columns.
Next, it helps in the beginning to think of a matrix as a grid, labeling your rows with letters (A, B, C, ...) and your columns with numbers (1, 2, 3, ...).
For question a, we just want to take the elements A1, A2, A3, A6 and A7 from matrix H and make that the first row of matrix G. And then we will take the elements B3, B4, B5, B6 and B7 from matrix H as our second row in matrix G.
For question b, we will be taking columns from matrix H and making them rows in our matrix K. The second column of H looks like this:
{[1.5]
[2]
[40]}
Transposing this column will make our first row of K look like this:
{[1.5 2 40]}
Repeating for columns 3, 5 and 7 will give us the final matrix K as seen above.
Answer:
a=1.25m/s²
Explanation:
GIVEN DATA
vi=10m/s
vf=15m/s
S=5m
TO FIND
a=?
SOLUTION
by using third equation of motion
2as=(vf)²-(vi)²
2a(5m)=(15m/s)²-(10m/s)²
10m×a=225m²/s²-100m²/s²
10m×a=125m²/s²
a=
a=12.5m/s²
False.
Gravity changes depending on latitude, as well as height above sea level.