Answer:
a). 87.5 mA or
A
b). 1.78 
Explanation:

n the number of free electrons is 28 in text reference and if they don't give q is take as the charge of electron.
a).
A
b).


Answer:
40 Hz
Explanation:
f = 1/T = 1 / 0.025 = 40 Hz
Answer:
Explanation:
Block A sits on block B and force is applied on block A . Block A will experience two forces 1) force P and 2 ) friction force in opposite direction of motion . Block B will experience one force that is force of friction in the direction of motion .
Let force on block A be P . friction force on it will be equal to kinetic friction, that is μ mg , where μ is coefficient of friction and m is mass of block A
friction force = .4 x 2.5 x 9.8
= 9.8 N
net force on block A = P - 9.8
acceleration = ( P - 9.8 ) / 2.5
force on block B = 9.8
acceleration = force / mass
= 9.8 / 6
for common acceleration
( P - 9.8 ) / 2.5 = 9.8 / 6
( P - 9.8 ) / 2.5 = 1.63333
P = 13.88 N .
F = m • a
What we know:
- Gravity: 9.8 m/s
- Force: 490 N
Equation derived:
m = F/a
m = 490/9.8
= 50 kg
Answer:
allow the downward movement of the concentration gradient by passive transport
Explanation:
Passive transport is a process of substance transport, which is carried out spontaneously, without energy expenditure and in favor of the concentration gradient, that is, from a medium where the molecules are more concentrated towards a medium where their concentration is lower.
Three types of passive transport are distinguished: osmosis, simple diffusion and facilitated diffusion
<u>Simple diffusion</u>
It is the passage, through the plasma membrane, of small molecules without charge soluble in the lipid bilayer, such as some gases (oxygen and carbon dioxide). For a molecule to diffuse through the membrane it is necessary that there is a difference in concentration between the external and the internal environment.
<u>Diffusion facilitated
</u>
There are molecules such as amino acids, glucose and small ions that, due to their chemical and size characteristics, cannot diffuse through the lipid bilayer and require transport proteins for diffusion.
The transport proteins are immersed in the plasma membrane and can be of two types: protein channels, formed by proteins that generate a channel in the membrane, and permeases, which are proteins that, when joined to the molecule to be transported, change their shape by carrying them into the cell.