Answer:
119.7 mL.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas.
V is the volume of the container.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas (K).
- For the same no. of moles of the gas at two different (P, V, and T):
<em>P₁V₁/T₁ = P₂V₂/T₂.</em>
- P₁ = 100.0 mmHg, V₁ = 1000.0 mL, T₁ = 23°C + 273 = 296 K.
- P₂ = 1.0 atm = 760.0 mmHg (standard P), V₂ = ??? mL, T₂ = 0.0°C + 273 = 273.0 K (standard T).
<em>∴ V₂ = (P₁V₁T₂)/(T₁P₂) </em>= (100.0 mmHg)(1000.0 mL)(273.0 K)/(296 K)(760.0 mmHg) = 121.4 <em>mL.</em>
Given the volume of HCl solution = 30.00 mL
Molarity of HCl solution = 0.1000 M
Molarity, moles and volume are related by the equation:
Molarity = 
Converting volume of HCl from mL to L:

Calculating moles of HCl from volume in L and molarity:

The final moles would be reported to 4 sig figs. So the correct answer will be 0.03000 mol HCl
Correct option: C. 0.03000mol
Answer:
pOH= 14.248
[H+]=1.77 M
[OH-]=5.65 x10^-15M
Explanation:
pH+pOH= 14
pOH= 14-pH
pOH=14-(-0.248)
pOH= 14.248
[H+]=10^-pH= 10^-(-0.248)=1.77 M
[OH-]=10^-pOH= 10^-14.248=5.65 x10^-15M
1.123 nano-grams is your answer, do you understand now gimme dat 5 star and brainiest