Answer:
13
Step-by-step explanation:
Answer:
1/2
Step-by-step explanation:
fhbxgjhf u have it in a
Answer:
The correct option is;
Increasing one fifth unit/sec
Step-by-step explanation:
The equation that gives the curve of the particle of the particle is y = 5·x² - 1
The rate of decrease of the y value dy/dt = 2 units per second
We have;
dy/dx = dy/dt × dt/dx
dy/dx = 10·x
dy/dt = 2 units/sec
dt/dx = (dy/dx)/(dy/dt)
dx/dt = dy/dt/(dy/dx) = 2 unit/sec/(10·x)
When x = 1
dx/dt = 2/(10·x) = 2 unit/sec/(10 × 1) = 1/5 unit/sec
dx/dt = 1/5 unit/sec
Therefore, x is increasing one fifth unit/sec.
Answer:
y/x = R
Step-by-step explanation:
The two quantities x and y are proportional means they have a relation.
The equation is;
y= Rx ------to find the proportional R you make R the subject of the formula;
y/ x = R
Answer:
The time taken for the flare to hit the ground is approximately 10.7 seconds.
Step-by-step explanation:
Given : Suppose a flare is shot from the top of a 120 foot building at a speed of 160 feet per second. The equation
models the h height at t seconds of the flare.
To find : How long will it take for the flare to hit the ground?
Solution :
The equation
models the h height at t seconds of the flare.
The flare to hit the ground when h=0.
Substitute in the equation,

Applying quadratic formula, 
Where, a=-16, b=160 and c=120





Reject the negative value.
Therefore, the time taken for the flare to hit the ground is approximately 10.7 seconds.