1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
3 years ago
12

Select the correct inequality for the graph below:

Mathematics
2 answers:
BaLLatris [955]3 years ago
5 0

Answer:

the second choice that is the answer

Nastasia [14]3 years ago
5 0
Kmsjks didjenje iemenem iekememe
You might be interested in
1) Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given
neonofarm [45]

Answer:

Check below, please

Step-by-step explanation:

Hello!

1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this

x_{1}=2\\x_{2}=2-\frac{f(2)}{f'(2)}=2.5\\x_{3}=2.5-\frac{f(2.5)}{f'(2.5)}\approx 2.4166\\x_{4}=2.4166-\frac{f(2.4166)}{f'(2.4166)}\approx 2.41421\\x_{5}=2.41421-\frac{f(2.41421)}{f'(2.41421)}\approx \mathbf{2.41421}

2)  Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.

We can rewrite it as: x^2-2x-4=0

x_{1}=-1.1\\x_{2}=-1.1-\frac{f(-1.1)}{f'(-1.1)}=-1.24047\\x_{3}=-1.24047-\frac{f(1.24047)}{f'(1.24047)}\approx -1.23607\\x_{4}=-1.23607-\frac{f(-1.23607)}{f'(-1.23607)}\approx -1.23606\\x_{5}=-1.23606-\frac{f(-1.23606)}{f'(-1.23606)}\approx \mathbf{-1.23606}

As for

x_{1}=3.2\\x_{2}=3.2-\frac{f(3.2)}{f'(3.2)}=3.23636\\x_{3}=3.23636-\frac{f(3.23636)}{f'(3.23636)}\approx 3.23606\\x_{4}=3.23606-\frac{f(3.23606)}{f'(3.23606)}\approx \mathbf{3.23606}\\

3) Rewriting and calculating its derivative. Remember to do it, in radians.

5\cos(x)-x-1=0 \:and f'(x)=-5\sin(x)-1

x_{1}=1\\x_{2}=1-\frac{f(1)}{f'(1)}=1.13471\\x_{3}=1.13471-\frac{f(1.13471)}{f'(1.13471)}\approx 1.13060\\x_{4}=1.13060-\frac{f(1.13060)}{f'(1.13060)}\approx 1.13059\\x_{5}= 1.13059-\frac{f( 1.13059)}{f'( 1.13059)}\approx \mathbf{ 1.13059}

For the second root, let's try -1.5

x_{1}=-1.5\\x_{2}=-1.5-\frac{f(-1.5)}{f'(-1.5)}=-1.71409\\x_{3}=-1.71409-\frac{f(-1.71409)}{f'(-1.71409)}\approx -1.71410\\x_{4}=-1.71410-\frac{f(-1.71410)}{f'(-1.71410)}\approx \mathbf{-1.71410}\\

For x=-3.9, last root.

x_{1}=-3.9\\x_{2}=-3.9-\frac{f(-3.9)}{f'(-3.9)}=-4.06438\\x_{3}=-4.06438-\frac{f(-4.06438)}{f'(-4.06438)}\approx -4.05507\\x_{4}=-4.05507-\frac{f(-4.05507)}{f'(-4.05507)}\approx \mathbf{-4.05507}\\

5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.

x_{n+1}=x_{n}-\frac{f'(n)}{f''(n)}

f(x)=x^6-x^4+3x^3-2x

\mathbf{f'(x)=6x^5-4x^3+9x^2-2}

\mathbf{f''(x)=30x^4-12x^2+18x}

For -1.2

x_{1}=-1.2\\x_{2}=-1.2-\frac{f'(-1.2)}{f''(-1.2)}=-1.32611\\x_{3}=-1.32611-\frac{f'(-1.32611)}{f''(-1.32611)}\approx -1.29575\\x_{4}=-1.29575-\frac{f'(-1.29575)}{f''(-4.05507)}\approx -1.29325\\x_{5}= -1.29325-\frac{f'( -1.29325)}{f''( -1.29325)}\approx  -1.29322\\x_{6}= -1.29322-\frac{f'( -1.29322)}{f''( -1.29322)}\approx  \mathbf{-1.29322}\\

For x=0.4

x_{1}=0.4\\x_{2}=0.4\frac{f'(0.4)}{f''(0.4)}=0.52476\\x_{3}=0.52476-\frac{f'(0.52476)}{f''(0.52476)}\approx 0.50823\\x_{4}=0.50823-\frac{f'(0.50823)}{f''(0.50823)}\approx 0.50785\\x_{5}= 0.50785-\frac{f'(0.50785)}{f''(0.50785)}\approx  \mathbf{0.50785}\\

and for x=-0.4

x_{1}=-0.4\\x_{2}=-0.4\frac{f'(-0.4)}{f''(-0.4)}=-0.44375\\x_{3}=-0.44375-\frac{f'(-0.44375)}{f''(-0.44375)}\approx -0.44173\\x_{4}=-0.44173-\frac{f'(-0.44173)}{f''(-0.44173)}\approx \mathbf{-0.44173}\\

These roots (in bold) are the critical numbers

3 0
3 years ago
Find the equation of the plane z = mx + ny + b which contains the points (0,0,6), (1,0,-3) and (0,2,5).
leonid [27]
The three points give you three equations, which you can solve by your favorite method.
.. 0m +0n +b = 6
.. 1m +0n +b = -3
.. 0m +2n +b = 5

(m, n, b) = (-9, -1/2, 6)
so the equation of the plane can be written as
.. z = -9x -1/2y +6

_____
In standard form, this would be
.. 18x +y +2z = 12

8 0
3 years ago
Hi again :') i got a new question
const2013 [10]
The answer to your question is 9 x 9 = 81.
6 0
3 years ago
Read 2 more answers
Please help me with this
timama [110]

Answer:

m<1 = 45°  

m<2 = 76°

m<3 = 80°

Step-by-step explanation:

<u>Points to remember</u>

1). Vertically opposite angles are equal

2). Sum of angles of a triangles is 180°

<u>To find the measures of given angles</u>

From the figure we get,

m<1 = 45°   [Vertically opposite angles]

By using angle sum property <2 + 59 + 45 = 180

m<2 = 180 - 104

m<2 = 76°

Also m<1 + m<3 + 55 = 180

m<3 = 180 - (m<1 + 55)

 = 180 - (45 + 55)

 = 180 - 100

m<3 = 80°

5 0
3 years ago
The sum of two numbers is 136.One number is 51.What is the the other number? What are the common factors of these two numbers
SVEN [57.7K]
136-51=85. so the common factors would be 1 and 17
4 0
3 years ago
Read 2 more answers
Other questions:
  • At noodle &amp; company restaurant, the probability that a customer will order a nonalcoholic beverage is .46. Find the probabil
    5·1 answer
  • Find the equation of the line with a slope of 2/5 and containing the point (10,6).
    9·1 answer
  • Write the expression as a single power using only positive exponents, if possible. Assume no denominator equals zero. Will give
    5·1 answer
  • Solve the following inequality. Then place the correct answer in the box provided. 2x &lt; 8 If someone could please explain it
    13·2 answers
  • Round your answer to two decimal places.
    14·1 answer
  • Whats -3/10 times -2/9
    15·2 answers
  • Please answer !!!what is the product of the two binomials below?
    14·2 answers
  • 80% of what number is 190
    12·2 answers
  • Jade used Fraction 3 over 4 yard of fabric to make a scarf. Can she make 2 of these scarves with Fraction 1 and 4 over 5 yards o
    15·2 answers
  • Does the graph represent a function?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!