1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
2 years ago
9

A taxi

Physics
1 answer:
nignag [31]2 years ago
3 0

That taxi will traveled 1500s by carrying the passenger.

You might be interested in
Answer all these questions for a TON OF POINTS
IgorC [24]
1). E
2). A
3). 4N
4). D
3 0
3 years ago
Read 2 more answers
A domestic water heater holds 189 L of water at 608C, 1 atm. Determine the exergy of the hot water, in kJ. To what elevation, in
Gekata [30.6K]

A.

The energy of the hot water is 482630400 J

Using Q = mcΔT where Q = energy of hot water, m = mass of water = ρV where ρ = density of water = 1000 kg/m³ and V = volume of water = 189 L = 0.189 m³,

c = specific heat capacity of water = 4200 J/kg-°C and ΔT = temperature change of water = T₂ - T₁ where T₂ = final temperature of water = 608 °C. If we assume the water was initially at 0°C, T₁ = 0 °C. So, the temperature change ΔT = 608 °C - 0 °C = 608 °C

Substituting the values of the variables into the  equation, we have

Q = mcΔT

Q = ρVcΔT

Q = 1000 kg/m³ × 0.189 m³ × 4200 J/kg-°C × 608 °C

Q = 482630400 J

So, the energy of the hot water is 482630400 J

B.

The elevation <u>the mass would have to be raised from zero elevation relative to the reference environment for its exergy to equal that of the hot water</u> is 49248 m.

Using the equation for gravitational potential energy ΔU = mgΔh where m = mass of object = 1000 kg, g = acceleration due to gravity = 9.8 m/s² and Δh = h - h' where h = required elevation and h' = zero level elevation = 0 m

Since the energy of the mass equal the energy of the hot water, ΔU = 482630400 J

So, ΔU = mgΔh

ΔU = mg(h - h')

making h subject of the formula, we have

h = h' + ΔU/mg

Substituting the values of the variables into the equation, we have

h = h' + ΔU/mg

h = 0 m + 482630400 J/(1000 kg × 9.8 m/s²)

h = 0 m + 482630400 J/(9800 kgm/s²)

h = 0 m + 49248 m

h = 49248 m

So, the elevation <u>the mass would have to be raised from zero elevation relative to the reference environment for its exergy to equal that of the hot water</u> is 49248 m.

Learn more about heat energy here:

brainly.com/question/11961649

5 0
2 years ago
Michael Jordan, el célebre basquetbolista, ganó el torneo de clavadas de la NBA en 1988. Para lograr la hazaña saltó 1.35 metros
kozerog [31]

(a) 0.40 s

First of all, let's find the initial speed at which Jordan jumps from the ground.

The maximum height is h = 1.35 m. We can use the following equation:

v^2-u^2=2gh

where

v = 0 is the velocity at the maximum height

u is the initial velocity

g=-9.8 m/s^2 is the acceleration of gravity

Solving for u,

u=\sqrt{-2gh}=\sqrt{-2(-9.8)(1.35)}=5.14 m/s

The time needed to reach the maximum height can now be found by using the equation

v=u+gt

Solving for t,

t=\frac{v-u}{g}=\frac{0-5.14}{-9.8}=0.52s

Now we can find the velocity at which Jordan reaches a point 20 cm below the maximum height, so at a height of

h' = 1.35 - 0.20 = 1.15 m

Using again the equation

v'^2-u^2=2gh'

we find

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(1.15)}=1.97 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{1.97-5.14}{-9.8}=0.32s

So the time to go from h' to h is

\Delta t = t-t'=0.52-0.32=0.20 s

And since we have also to take into account the fall down (after Jordan reached the maximum height), which is symmetrical, we have to multiply this time by 2 to get the total time of permanence in the highest 20 cm of motion:

\Delta t=2\cdot 0.20 = 0.40 s

(b) 0.08 s

This part is easier since we need to calculate only the velocity at a height of h' = 0.20 m:

v'^2-u^2=2gh'

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(0.20)}=4.74 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{4.74-5.14}{-9.8}=0.04s

So this is the time needed to go from h=0 to h=20 cm; again, we have to take into account the motion downwards, so we have to multiply this by 2:

\Delta t = 2\cdot 0.04 =0.08 s

8 0
3 years ago
Human blood consists of blood groups A, B, and O. However, there is one more blood group, AB, which contains alleles A and B in
Arturiano [62]
The answer is Codominance, AB blood cells inherit both A and B blood types so they are codominance
3 0
3 years ago
Read 2 more answers
How would you explain social control to someone who has no idea about our society?
Natasha2012 [34]
You can try to explain it by using a parallel between their and your societies .
7 0
3 years ago
Other questions:
  • Give an explaination to the following formula p=I^2R
    11·1 answer
  • Which statement is true about an object that is moving in a circular motion due to centripetal force, F, when the radius of its
    10·1 answer
  • A tennis ball traveling horizontally at a speed of 40 m/s hits a wall and rebounds in the opposite direction. The time Interval
    14·1 answer
  • Plants get the energy they need for photosynthesis by absorbing
    11·2 answers
  • An 80 kg skydiver is falling at terminal velocity. What is the value of air resistance acting on his body? Consider, what are th
    14·1 answer
  • If the work function of a material is such that red light of wavelength 700 nm just barely initiates the photoelectric effect, w
    5·1 answer
  • Please help me answer this question I will be given the brainliest as well
    8·1 answer
  • State and prove Newton's second law of motion ​
    14·1 answer
  • Numerical: A capacitor of 200 picofarad is charged to a potential difference of 100 volts. It's plates are then connected parall
    13·1 answer
  • The initial momentum of a system is measured at 300 kg•m/s. Afterwards, the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!