It is harder to push a box with groceries in it because the mass is weighing the box down. Which makes it harder to push
Types of Gas? I'm not exactly sure what you're asking
Light is not matter. A photon is not matter because it has no mass. So rephrase your question...
Answer: ⇒ Answer is 3
<h2>Explanation
: momentum = mass × velocity</h2>
"A small force may produce a large change in momentum by acting on a very massive object".
THEY HAVEN'T GIVEN US THE TIME PERIOD NOR THE DISTANCE TRAVELED. THEREFORE WE CANNOT ACTUALLY DECIDE IF THE FORCE IS KEPT FOR A LONG TIME OR SHORT TIME. ANYWAYS SINCE THE MASS IS GIVEN AS MASSIVE , THE MOMENTUM SHOULD BE DEFINITELY HIGH.
WHY I SAY OTHERS ARE WRONG:
1) For a small force to give a large change in momentum, it should act for a long time interval.
2) By applying a large force for a short time interval, the change of momentum should be large.
3) Correct answer.
4) Acting over a short distance can be the same as acting over a short period of time.Therefore the distance should be large in order for a larger momentum.
I HOPE IT HELPS!
Answer:
The entropy change is 45.2 kJ/K.
Explanation:
mass of water at 100 C = 2 kg
Latent heat of vaporization, L = 2260 kJ/kg
Heat is
H = m L
H = 2 x 2260 = 4520 kJ
Entropy is given by
S = H/T = 4520/100 = 45.2 kJ/K