Answer:
Sound waves travel at 343 m/s through the air and faster through liquids and solids. The waves transfer energy from the source of the sound, e.g. a drum, to its surroundings. Your ear detects sound waves when vibrating air particles cause your ear drum to vibrate. The bigger the vibrations the louder the sound.
Explanation:
Answer:
When dealing with the force of gravity between two objects, there are only two things that are important – mass, and distance. The force of gravity depends directly upon the masses of the two objects, and inversely on the square of the distance between them.Explanation:
Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
Answer:
An investigation is made to determine the performance of simple thin airfoils in the slightly supersonic flow region with the aid of the nonlinear transonic theory first developed by von Kármán[1]. Expressions for the pressure coefficient across an oblique shock and a Prandtl-Meyer expansion are developed in terms of a transonic similarity parameter. Aerodynamic coefficients are calculated in similarity form for the flat plate and asymmetric wedge airfoils, and curves are plotted. Sample curves for a flat plate and a specific asymmetric wedge are plotted on the usual coordinate grid of Cl, Cd,andCmc/4versus angle of attack and Cl versus Mach Number to illustrate the apparent features of nonlinear flow.
Explanation:
Answer:
<em>The range is 35.35 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and
the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:



The range is 35.35 m