1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
3 years ago
7

The process that keeps heat from being transferred between two substances is A) conduction. B) convection. C) insulation. D) rad

iation.
Physics
2 answers:
oee [108]3 years ago
5 0
The answer is C insulation
Zina [86]3 years ago
5 0
C: Insulation 

Think of a thermos that you keep coffee in! :)
You might be interested in
The "steam" above a freshly made cup of instant coffee is really water vapor droplets condensing after evaporating from the hot
KiRa [710]

Answer:

T_{f} = 85.7 ° C

Explanation:

For this exercise we will use the calorimetry heat ratios, let's start with the heat lost by the evaporation of coffee, since it changes from liquid to vapor state

      Q₁ = m L

Where m is the evaporated mass (m = 2.00 103-3kg) and L is 2.26 106 J / kg, where we use the latent heat of the water

     Q₁ = 2.00 10⁻³ 2.26 10⁶

     Q1 = 4.52 10³ J

Now the heat of coffee in the cup, which does not change state is

     Q coffee = M c_{e} ( T_{f} -T_{i})

Since the only form of energy transfer is terminated, the heat transferred is equal to the evaporated heat

    Qc = - Q₁

    M ce (T_{f} -T_{i}) = - Q₁

The coffee dough left in the cup after evaporation is

    M = 250 -2 = 248 g = 0.248 kg

   T_{f} -Ti = -Q1 / M c_{e}

   T_{f} = Ti - Q1 / M c_{e}

Since coffee is essentially water, let's use the specific heat of water,

    c_{e}= 4186 J / kg ºC

Let's calculate

     T_{f} = 90.0 - 4.52 103 / (0.248 4.186 103)

     T_{f} = 90- 4.35

     T_{f} = 85.65 ° C

     T_{f} = 85.7 ° C

5 0
3 years ago
A wave has a wavelength of 10mm and a frequency of 5 hz what is the speed?
geniusboy [140]
V=fλ
v=5*0.01
Therefore v=0.05
3 0
4 years ago
Read 2 more answers
This version of Einstein’s equation is often used directly to find what value?
Setler [38]
This version of Einstein’s equation is often used directly to find what value? E = ∆mc2

Answer: This version of Einstein’s equation is often used directly to find the mass that is lost in a fusion reaction. Therefore the correct answer to this question is answer choice C).

I hope it helps, Regards.
8 0
3 years ago
Read 2 more answers
A 15.0 Ohms resistor is connected in series to a 120V generator and two 10.0 Ohms resistors that are connected in parallel to ea
Nostrana [21]

Hi there! :)

Reference the diagram below for clarification.

1.

We must begin by knowing the following rules for resistors in series and parallel.

In series:
R_T = R_1 + R_2 + ... + R_n

In parallel:
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_n}

We can begin solving for the equivalent resistance of the two resistors in parallel using the parallel rules.

\frac{1}{R_{T, parallel}} = \frac{1}{10} + \frac{1}{10}\\\\\frac{1}{R_{T, parallel}} = \frac{2}{10} = \frac{1}{5}\\\\R_{T, parallel} = 5\Omega

Now that we have reduced the parallel resistors to a 'single' resistor, we can add their equivalent resistance with the other resistor in parallel (15 Ohm) using series rules:
R_T = 15 + 5\\\\\boxed{R_T = 20 \Omega}

2.

We can use Ohm's law to solve for the current in the circuit.

i = \frac{V}{R_T}\\\\i = \frac{120}{20} = \boxed{6 A}

3.

For resistors in series, both resistors receive the SAME current.

Therefore, the 15Ω resistor receives 6A, and the parallel COMBO (not each individual resistor, but the 5Ω equivalent when combined) receives 6A.

In this instance, since both of the resistors in parallel are equal, the current is SPLIT EQUALLY between the two. (Current in parallel ADDS UP). Therefore, an even split between 2 resistors of 6 A is <u>3A for each 10Ω resistor</u>.

4.

Since the 15.0 Ω resistor receives 6A, we can use Ohm's Law to solve for voltage.

V = iR\\\\V = (6)(15) = \boxed{90 V}

4 0
2 years ago
What mass of water will fill a tank that is 100.0 cm long, 50.0 cm wide, and 30.0 cm high? Express the answer in grams.
Bond [772]
calculate\ mass\ from\ formula\ for\ density:\\\\&#10;density=volume*mass\\&#10;mass=\frac{density}{volume}\\\\&#10;volume=width*length*height\\&#10;volume=100*50*30=150000cm^3=0,15m^3\\\\&#10;density\ of\ water=\ 999.9720 \frac{kg}{m^3} \\\\mass=0,15*999.9720=149,9958kg=149995,8grams\\\\ Answer\ is\ :\\water\ which\ weight\ is\ equal\ to\ 149995,8grams.&#10;
4 0
3 years ago
Other questions:
  • What’s the velocity of an 11-kilogram object with 792 joules of kinetic energy?
    12·2 answers
  • A 9.0 volt battery is connected to four resistors in a parallel circuit. The resistors have 7.0 Ω, 5.0 Ω, 4.0 Ω, and 2.0 Ω respe
    9·2 answers
  • Fiona drives 18 meters east and 24 meters south. What is the magnitude of her displacement?
    10·1 answer
  • Science fair ideas??? please help
    7·2 answers
  • Francis Bacon created a new way of scientific thinking called inductive reasoning. How was this different from the deductive rea
    9·2 answers
  • Even though forces are acting on this box, it remains at rest on the table. Which force is represented by vector A.
    5·2 answers
  • Air of temperature T[infinity] = 27 °C is being used to cool an engine. Consider a single cooling fin at a temperature of Ts = 5
    13·1 answer
  • The term angle of deviation is used in reference to
    11·1 answer
  • On the left is a drawing of what scientist Thomas Young demonstrated in the early nineteenth century when he conducted an experi
    14·1 answer
  • How does solar energy work
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!