The answer is D
Hope this helps
Answer:
a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center
Explanation:
Let n₁ and n₂ be no of lines per unit length of grating A and B respectively.
λ₁ and λ₂ be wave lengths of green and red respectively , D be distance of screen and d₁ and d₂ be distance between two slits of grating A and B ,
Distance of first maxima for green light
= λ₁ D/ d₁
Distance of first maxima for red light
= λ₂ D/ d₂
Given that
λ₁ D/ d₁ = λ₂ D/ d₂
λ₁ / d₁ = λ₂ / d₂
λ₁ / λ₂ = d₁ / d₂
But
λ₁ < λ₂
d₁ < d₂
Therefore no of lines per unit length of grating A will be more because
no of lines per unit length ∝ 1 / d
If grating B is illuminated with green light first maxima will be at distance
λ₁ D/ d₂
As λ₁ < λ₂
λ₁ D/ d₂ < λ₂ D/ d₂
λ₁ D/ d₂ < 1 m
In this case position of first maxima will be less than 1 meter.
Option a is correct .
Answer:
x = 76.5 m
Explanation:
Let's use Newton's second law at the point of contact between the wheel and the floor.
fr = m a
fr = miy N
N-W = 0
N = W
μ mg = m a
a = miu g
a = 0.600 9.8
a = 5.88 m / s²
Having the acceleration we can use the kinematic relationships to find the distance
² = v₀² + 2 a x
= 0
x = -v₀² / 2 a
Acceleration opposes the movement by which negative
x = - 30²/2 (-5.88)
x = 76.5 m
Answer:
the molecules will begin to move slowly and will turn to ice
Explanation:
hope this was good or not not sure if am right but yeah
Answer:
resultant force = (f1²+f2²)½
=(1.5²+2²)½
=(2.25+4)½
=(6.25)½
=2.5
Explanation:
okay this question seems easy. now if the 1.5 is vertically upwards so is that 2 is horizontally downwards hence as u say its 90 degrees thn it forms a right angled triangle.