The answer: less frequency, causing the pitch to be lowered.
This is known as the Doppler effect. When you have an object that is producing sound while moving, the side that it is moving towards to will have waves that will become a bit more squished together, while the other side that it is moving away from will have waves that are spaced a bit more apart from each other. The only determining factor in this is the magnitude of the speed, so the faster the object is moving towards or away from you, then the more severe pitch change the object will have.
In this case, it's just asking in general what would happen if the horn was moving away from you while it was giving off sound waves. Therefore, since it is moving away from you, its sound waves are a bit further apart, resulting in a lowered frequency and pitch.
Answer:- 544.5 mL of water need to be added.
Solution:- It is a dilution problem. The equation used for solving this type of problems is:

where,
is initial molarity and
is the molarity after dilution. Similarly,
is the volume before dilution and
is the volume after dilution.
Let's plug in the values in the equation:



Volume of water added = 907.5mL - 363mL = 544.5 mL
So, 544.5 mL of water are need to be added to the original solution for dilution.
Answer:The world population increased from 1 billion in 1800 to 7.7 billion today. The world population growth rate declined from 2.2% per year 50 years ago to 1.05% per year. Other relevant research: World population growth – This article is focusing on the history of population growth up to the present.
Explanation:
Answer:
1-Ethyl-3-methylidenecyclopentane
Step-by-step explanation:
Formula = C₈H₁₄. An alkane has formula C₈H₁₈. ∴ X contains 2 double bonds, 2 rings, or 1 ring and 1 double bond.
X absorbs only 1 mol of hydrogen. ∴ X contains 1 ring and 1 double bond.
Hydrogenation gives 1-ethyl-3-methylcyclopentane.
Ozonolysis gives formaldehyde, so X must contain a =CH₂ group.
Hydrogenation of X converted the =CH₂ to -CH₃.
X is 1-ethyl-3-methylidenecyclopentane.
You can see the reactions in the image below.
Answer:
pOH = -log[OH – ]
pH + pOH = 14
Explanation:
I did not understand the question but hope this help!