64 miles
If 16 is 1/4 of the total distance, then x (the total distance) will be 4/4. To get 1/4 to equal 4/4, you multiply it by 4. Therefore you can multiply 16 by 4 to get 64 as the answer.
Answer:
r = {-8, -4}
Step-by-step explanation:
Simplifying
r2 = -32 + -12r
Solving
r2 = -32 + -12r
Solving for variable 'r'.
Reorder the terms:
32 + 12r + r2 = -32 + -12r + 32 + 12r
Reorder the terms:
32 + 12r + r2 = -32 + 32 + -12r + 12r
Combine like terms: -32 + 32 = 0
32 + 12r + r2 = 0 + -12r + 12r
32 + 12r + r2 = -12r + 12r
Combine like terms: -12r + 12r = 0
32 + 12r + r2 = 0
Factor a trinomial.
(8 + r)(4 + r) = 0
Subproblem 1
Set the factor '(8 + r)' equal to zero and attempt to solve:
Simplifying
8 + r = 0
Solving
8 + r = 0
Move all terms containing r to the left, all other terms to the right.
Add '-8' to each side of the equation.
8 + -8 + r = 0 + -8
Combine like terms: 8 + -8 = 0
0 + r = 0 + -8
r = 0 + -8
Combine like terms: 0 + -8 = -8
r = -8
Simplifying
r = -8
Subproblem 2
Set the factor '(4 + r)' equal to zero and attempt to solve:
Simplifying
4 + r = 0
Solving
4 + r = 0
Move all terms containing r to the left, all other terms to the right.
Add '-4' to each side of the equation.
4 + -4 + r = 0 + -4
Combine like terms: 4 + -4 = 0
0 + r = 0 + -4
r = 0 + -4
Combine like terms: 0 + -4 = -4
r = -4
Simplifying
r = -4
Solution
r = {-8, -4}
Answer:
-10x + 16
Step-by-step explanation:
Combine Like terms
Answer: The missing statements are,
In first blank: ∠2≅∠1
In second blank: AC≅AC
In third blank: Reflexive
Step-by-step explanation:
Since, The hypotenuse angle theorem states that if the hypotenuse and an acute angle of one right triangle are congruent to the hypotenuse and an acute angle of another right triangle, then the two triangles are congruent to each other.
Here, given:
∠D and ∠B are right angles.
DC ║ AB
Prove: Δ ADC ≅ Δ CBA
Statement Reason
1.∠D and ∠B are right angles 1. Given
2. ∠2 ≅ ∠1 2. If lines are parallel then interior angles
are equal
3. AC≅AC 3. Reflexive
4.Δ ADC ≅ Δ CBA 4. Hypotenuse angle theorem
This is a geometric sequence with common ratio (r) = 2.
an = ar^(n - 1)
a4 = a(2)^(4 - 1) = a(2)^3 = 8a
8a = 80
a = 80/8 = 10
7th term (a7) = 10(2)^(7 - 1) = 10(2^6) = 10(64) = 640