Complete Question
Use the fact that
to determine how much the pressure must change in order to lower the boiling point of water by a small amount 3.20e-01 K. You may assume that the entropy and density of the liquid and gas are roughly constant for these small changes. You may also assume that the volume per molecule of liquid water is approximately zero compared to that of water vapor, and that water vapor is an ideal gas. Useful constants: Atmospheric pressure is 101300 Pa The boiling point of water at atmospheric pressure is 373.15 K The entropy difference between liquid and gas per kilogram is 6.05e 03 J/kgK The molecular weight of water is 0.018 kg/mol. (a) 0.00e 00 Pa (b) 1.14e 03 Pa (c) 6.85e 26 Pa (d) 4.24e 05 Pa (e) 3.81e 28 Pa
Answer:
Correct option is B
Explanation:
From the question we are told that:
Given Equation 
Change of boiling point \triangle 
Generally the equation for Change in time is mathematically given by


Where


And
(from ideal gas equation)
Therefore




Therefore correct option is B
TPGS-750 M conducts reaction under lower temperature then the reactions carried out in organic solvents.
<h3>What is tpgs-750m ?</h3>
It is a chemical molecule of the second generation known as an amphiphile, with both hydrophilic and lipophilic qualities.
- In contrast to any other organic solvent, water is used for transition metal catalysed cross-coupling, making TPGS-750M a second generation surfactant with physical features that encourage this process.
- The hydrophilic portion of TPGS-750M, which is utilised in medicine, is made of Poly(ethylene glycol), and the hydrophobic portion is made of the vitamin E compound alpha-tocopherol.
Learn more about Reaction rate here:
brainly.com/question/25724512
#SPJ4
What do you need help with? Can you specify?
Answer:
a. 5.0 x 10⁷ brown grains = 50 million
b. 5.0 x 10³ brown grains = 5000
Explanation:
The concentration of 2 % brown sand means we have for every 100 grains of sand 2 are brown.
We need to calculate the number of brown sand in the bucket as follows:
= 2.5 x 10⁹ billion grains of sand x (2 brown grains/ 100 grains of sand)
= 5.0 x 10⁷ brown grains
Likewise if the concentration of brown sand is 2.0 ppm, it mean that we have 2 brown grain per every million grains of sand.
= 2.5 x 10⁹ billion grains of sand x ( 2.0 brown grains/10⁶ grains of sand )
= 5.0 x 10³ brown grains
The answers make sense since a concentration of 1 part per million is ten thousandths of a 1 percent