Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by
where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m
T = 20.0 N
Substituting into the equation, we find the fundamental frequency:
The next frequencies (harmonics) are given by
with n being an integer number and f being the fundamental frequency.
So we get:
The calculated magnitude is 6.73 x 10³ V/m.
AMU is described as being one-twelfth the mass of a carbon-12 atom (12C). C makes up more than 98% of the carbon that can be found in nature, making it the most prevalent isotope. The magnitude of the field is the change in potential across a small distance in the indicated direction divided by that distance.
Potential difference = 8.20 kV= 8.20 x 10³ V
radius= 19.4/100=0.194 m
total distance that is circumference of the circle= 2πr =2 x 3.14 x 0.194
= 1.218 m
therefore Magnitude= 8.20 x 10³ / 1.218
=6.73 x 10³ V/m
Learn more about Magnitude here-
brainly.com/question/15681399
#SPJ9
Bro I really think it might be c
Answer:
Add an arrow above the symbol p to show it is a vector. Sometimes it is italicized in textbooks.
Explanation:
Answer:
mass of the object is 2.18 kg
Explanation:
Given
Force (F) = 8.5 N = 8.5 kg.m/
acceleration (a) = 3.9 m/
Mass (m) = ?
We know that the newton's second law of motion gives the relation between mass of ab object. force acted upon and the amount the object is accelerated. It is expressed in the form of an equation:
F = ma
mass, m = F/a
=
= 2.18 kg