Answer:
F = - 3.53 10⁵ N
Explanation:
This problem must be solved using the relationship between momentum and the amount of movement.
I = F t = Δp
To find the time we use that the average speed in the contact is constant (v = 600m / s), let's use the uniform movement ratio
v = d / t
t = d / v
Reduce SI system
m = 26 g ( 1 kg/1000g) = 26 10⁻³ kg
d = 50 mm ( 1m/ 1000 mm) = 50 10⁻³ m
Let's calculate
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
With this value we use the momentum and momentum relationship
F t = m v - m v₀
As the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26 10⁻³ (-500 - 630) / 8.33 10⁻⁵
F = - 3.53 10⁵ N
The negative sign indicates that the force is exerted against the bullet
Metalloids are all solid at room temperature. Some metalloids, such as silicon and germanium, can act as electrical conductors under the right conditions, thus they are called semi-conductors. Silicon for example appears lustrous, but is not malleable or ductile (it is brittle - a characteristic of some nonmetals).
Read more on Brainly.com -
brainly.com/question/6662487#readmoreHope that helped!
:)
W, because as time is moving up at a consistent rate the speed is as well, creating the straight line.
Answer:
The fraction of its volume inside liquid is increased .
Explanation:
According to principle pf floatation , an object floats on the surface of water
when the weight of liquid displaced by it becomes equal to weight of the object . weight of the liquid depends upon the density of the liquid .
In the second case , when the body is dipped into liquid of lesser density , in order to balance the weight of body , more volume of liquid will be displaced so that weight of displaced liquid becomes equal to object's weight . So the body floats with greater depth inside liquid . The fraction of its volume inside liquid is increased .