Answer:
mass of the neutron star =3.45185×10^26 Kg
Explanation:
When the neutron star rotates rapidly, a material on its surface to remain in place, the magnitude of the gravitational acceleration on the central material must be equal to magnitude of the centripetal acc. of the rotating star.
That is
M_ns = mass odf the netron star.
G= gravitational constant = 6.67×10^{-11}
R= radius of the star = 18×10^3 m
ω = 10 rev/sec = 20π rads/sec
therefore,
= 3.45185... E26 Kg
= 3.45185×10^26 Kg
Answer:
1.21
Explanation:
Heat rise in the body happens due to heat supplied by water to the body.
Heat rise in body = m₁ c₁ ΔT₁
Where m₁ is mass of body and c₁ is its specific heat of body
Heat lost from water to the body = m₂ c₂ ΔT₂
Where m₂ is mass of water and c₂ is its specific heat of water ( c₂ =1 (since water))
Equating both:
15.3 x c₁ x 4.3 = 80.2 x 1 x 4.3
⇒ c₁ = 80.2 / (15.3 x 4.3) = 1.21
Answer:
B. 59 kg
Explanation:
From the graph you notice that a linear relation in indicated by the line joining the points such that the points on the line represent the data that show a correct relationship in the experiment.
This means that the point outside the line has an error .
This point is the value 59 kg that does not align with other values which are included in the graph.
The resistance of a wire is directly proportional to the length of the wire. That is the longer the length of the wire, the higher the resistance and the shorter the length of the wire, the smaller the resistance.