<u>Given:</u>
Mass of solvent water = 4.50 kg
Freezing point of the solution = -11 C
Freezing point depression constant = 1.86 C/m
<u>To determine:</u>
Moles of methanol to be added
<u>Explanation:</u>
The freezing point depression ΔTf is related to the molality m through the constant kf, as follows:
ΔTf = kf*m
where ΔTf = Freezing point of pure solvent (water) - Freezing pt of solution
ΔTf = 0 C - (-11.0 C) = 11.0 C
m = molality = moles of methanol/kg of water = moles of methanol/4.50 kg
11.0 = 1.86 * moles of methanol/4.50
moles of methanol = 26.613 moles
Ans: Thus around 26.6 moles of methanol should be added to 4.50 kg of water.
Answer:
The particles of the medium just vibrate in place.
Explanation:
As they vibrate, they pass the energy of the disturbance to the particles next to them, which pass the energy to the particles next to them, and so on. Particles of the medium don't actually travel along with the wave.
The stoichiometry of the reaction gives the molar ratio in which the reactants react with each other and the ratio in which products are formed.
The coefficients of the reactants in the reaction follow the stoichiometry
the balanced chemical equation for the reaction is as follows;
2C₃H₆(g) + 9O₂(g) ---> 6CO₂(g) + 6H₂O(l)
Answer: One formula unit of NaCl consists of one cation, whose chemical symbol is
and one anion whose chemical symbol is 
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
The cation is formed by the metal sodium which forms
and the anion is formed by non metal chlorine which forms
.
For a formula unit of sodium chloride, the charges have to be balanced , thus the valencies of ions are exchanged and the neutral compound result. Thus
and
combine to form neutral 
The number of valence electrons of an element can be determined by the periodic table group (vertical column) in which the element is categorized