Answer:
jayfeather friend me
Explanation:
Hence it is quite important to understand and learn the processes of the water cycle.
Step 1: Evaporation. The water cycle starts with evaporation. ...
Step 2: Condensation. ...
Step 3: Sublimation. ...
Step 4: Precipitation. ...
Step 5: Transpiration. ...
Step 6: Runoff. ...
Step 7: Infiltration.
1) At tne same temperature and with the same volume, initially the chamber 1 has the dobule of moles of gas than the chamber 2, so the pressure in the chamber 1 ( call it p1) is the double of the pressure of chamber 2 (p2)
=> p1 = 2 p2
Which is easy to demonstrate using ideal gas equation:
p1 = nRT/V = 2.0 mol * RT / 1 liter
p2 = nRT/V = 1.0 mol * RT / 1 liter
=> p1 / p2 = 2.0 / 1.0 = 2 => p1 = 2 * p2
2) Assuming that when the valve is opened there is not change in temperature, there will be 1.00 + 2.00 moles of gas in a volumen of 2 liters.
So, the pressure in both chambers (which form one same vessel) is:
p = nRT/V = 3.0 mol * RT / 2liter
which compared to the initial pressure in chamber 1, p1, is:
p / p1 = (3/2) / 2 = 3/4 => p = (3/4)p1
So, the answer is that the pressure in the chamber 1 decreases to 3/4 its original pressure.
You can also see how the pressure in chamber 2 changes:
p / p2 = (3/2) / 1 = 3/2, which means that the pressure in the chamber 2 decreases to 3/2 of its original pressure.
Spectrophotometric cell or a cuvette is made of quartz for UV spectrophotometers. These cuvettes are used as sample holders for the spectrophotometric determination of the analytes. The material that makes up the cuvette and the condition of the cuvette is to be taken care of in order to avoid erroneous absorbance readings. The sample holder or the cuvette must be removed from the spectrophotometer in between two successive readings. This is to ensure that the light sensing detector of the instrument is not affected.