1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liraira [26]
3 years ago
6

Giving 100 points to the correct answers for all 8 questions! I need help. This assignment is about constant acceleration for Ph

ysics.

Physics
1 answer:
solong [7]3 years ago
8 0

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

You might be interested in
12.51 A parallel RLC circuit, which is driven by a variable frequency 2-A current source, has the following values: R = 1 kΩ, L
Anastaziya [24]

Answer:

BW = 100 rad/s

wlow = 452.49 rad/s

whigh = 552.49 rad/s

V(jwlow) =1414.21 < 45°V

V(jwhigh) =1414.21 <-45°V

Explanation:

To calculate bandwidth we have formula

BW = 1/RC

BW = 1/ 1000x10x10^¯6

BW = 100 rad/s

We will first calculate resonant frequency and quality factor for half power frequencies.

For resonant frequency

wo = 1/(SQRT LC)

wo = 1/SQRT 400×10¯³ × 10×10^¯6

wo = 500 rad/s

For Quality

Q = wo / BW

Q = 500/100

Q = 5

wlow = wo [-1/2Q+ SQRT (1/2Q)² + 1]

wlow = 500 [-1/2×5 + SQRT (1/2×5)² + 1]

wlow = 452.49 rad/s

whigh = wo [1/2Q+ SQRT (1/2Q)² + 1]

whigh = 500 [1/2×5 + SQRT (1/2×5)² + 1]

whigh = 552.49 rad/s

We will start with admittance at lower half power frequency

Y(jwlow) = (1/R) + (1/jwlow L) + (jwlow C)

Y(jwlow) = (1/1000) + (1/j×452.49×400×10¯³) + (j×452.49×10×10^¯6)

Y(jwlow) = 0.001 - j5.525×10¯³ + j4.525×10¯³

Y(jwlow) = (1-j).10¯³ S

Voltage across the network is calculated by ohm's law

V(jwlow) = I/Y(jwlow)

V(jwlow) = 2/(1-j).10¯³

V(jwlow) = 1414.2 < 45°V

Now we will calculate the admittance at higher half power frequency

Y(jwhigh) = (1/R) + (1/jwhigh L) + (jwhigh C)

Y(jwhigh) = (1/1000) + (1/j×552.49×400×10¯³) + (j×552.49×10×10^¯6)

Y(jwhigh) = 0.001 - j4.525×10¯³ + j5.525×10¯³

Y(jwhigh) = (1+j).10¯³ S

Voltage across network will be calculated by ohm's law

V(jwhigh) = I/Y(jwhigh)

V(jwhigh) = 2/(1+j).10¯³

V(jwhigh) = 1414.2 < - 45°V

6 0
3 years ago
What is the most likely effect on the life of a plant if a student cuts it’s flowers?
goblinko [34]

Answer:

D

Explanation:

The reproduction parts of the plant are in the flower and around it so this would eliminate the plants ablity to reproduce.

5 0
3 years ago
Read 2 more answers
Two blocks of masses 3 kg and 5 kg approach each other with initial velocities 4 m/s and -6 m/s respectively. The two blocks col
Kipish [7]

Answer:

Explanation:

After the collision velocity of the particle is (4î - 3ĵ)m/s . ... A particle of mass 1 kg moving with a velocity of (4i^−3j^​)m/s collides with a fixed surface. ... Perfectly inelastic. D ... The common velocity of the blocks after collision is: ... A ball falls from a height of 5 m and strikes the roof of a lift. ... Stay upto date with our Newsletter! i know this is not right but just here for points see ya loser

6 0
3 years ago
Hello guys! Can u please help me with physics. I translated it in English. Can yall help me please how much u can!!
DedPeter [7]

1. Since the body is thrown vertically upward, the only force acting on it as it rises and falls is gravity, which causes a constant downward acceleration with magnitude g = 9.8 m/s². Because this acceleration is constant, we can use the formula

v² - u² = 2a ∆x

where

u = initial speed

v = final speed

a = acceleration

∆x = displacement

At its maximum height, some distance y above the point where the body is launched, the body has zero velocity, so

0² - (20 m/s)² = 2 (-9.8 m/s²) y

Solve for y :

y = (20 m/s)² / (2 (9.8 m/s²)) ≈ 20.4 m

2. Relative to the ground, the body's maximum height is 60 m + 20.4 m ≈ 80.4 m.

3. At any time t ≥ 0, the body's vertical velocity is given by

v = 20 m/s - gt

At the highest point, we have

0 = 20 m/s - (9.8 m/s²) t

and solving for t gives

t = (20 m/s) / (9.8 m/s²) ≈ 2.04 s

4. The body's height y above the ground at any time t ≥ 0 is given by

y = 60 m + (20 m/s) t - 1/2 gt²

Solve for t when y = 0 :

0 = 60 m + (20 m/s) t - 1/2 (9.8 m/s²) t²

Using the quadratic formula,

t = (-b + √(b² - 4ac)) / (2a)

(and omitting the negative root, which gives a negative solution) where a = -1/2 (9.8 m/s²), b = 20 m/s, and c = 60 m. You should end up with

t ≈ 6.09 s

5. At the time found in (4), the body's velocity is

v = 20 m/s - g (6.09 s) ≈ -39.7 m/s

Speed is the magnitude of velocity, so the speed in question is 39.7 m/s.

6 0
3 years ago
A small glass bead has been charged to +20 nC. A small metal ball bearing 1.0 cm above the bead feels a 0.018 N downward electri
Alla [95]

Answer:

q=1\times10^{-8}C

Explanation:

Let the charge on the ball bearing is q.

charge on glass bead, Q = 20 nC = 20 x 10^-9 C

Force between them, F = 0.018 N

Distance between them, d = 1 cm = 0.01 m

By use of Coulomb's law in electrostatics

F=\frac{KQq}{d^{2}}

By substituting the values

0.018=\frac{9\times10^{9}\times20\times10^{-9}q}{0.01^{2}}

q=1\times10^{-8}C

Thus, the charge on the ball bearing is q=1\times10^{-8}C

7 0
3 years ago
Other questions:
  • When an object is moving with uniform circular motion, the centripetal acceleration of the object a. is circular. b. is perpendi
    14·1 answer
  • A circular coil has a 10.0 cm radius and consists of 30 closely wound turns of wire. An externally produced magnetic field of 2.
    10·1 answer
  • Waves inwhich the particles vibrate at right angles to direction is called
    8·1 answer
  • A 1.35 V potential difference is maintained across a 1.1 m length of tungsten wire that has a cross-sectional area of 0.72 mm2 .
    6·1 answer
  • What determines the ideal mechanical <br> advantage of a pulley?
    10·1 answer
  • A conservative force acts on a particle. We can conclude:
    15·1 answer
  • W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively
    12·1 answer
  • A maroon plane has a takeoff speed of 88.3 m/s and requires 1635 m to reach that speed. Determine the acceleration of the plane
    8·1 answer
  • In a surface wave (such as a water wave), particles __________.
    11·2 answers
  • A camera employs _lens to form_images ​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!