E2%80%8B%7D%7D%20%5C%5C%20" id="TexFormula1" title="Evaluate: \sqrt{ \frac {1 - sin(x)}{1 + sin(x)}} \\ " alt="Evaluate: \sqrt{ \frac {1 - sin(x)}{1 + sin(x)}} \\ " align="absmiddle" class="latex-formula">
Solve this problem please..
2 answers:

We have to <u>evaluate</u> the given <u>expression</u>.

If we multiple both numerator and denominator by 1 - sin(x), then the value remains same. Let's do that.
![\rm = \sqrt{ \dfrac{[1 - \sin(x)][1 - \sin(x) ]}{[1 + \sin(x)][1 - \sin(x) ]} }](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5B1%20-%20%20%5Csin%28x%29%20%5D%7D%7B%5B1%20%2B%20%20%5Csin%28x%29%5D%5B1%20-%20%20%20%5Csin%28x%29%20%5D%7D%20%7D%20)
![\rm = \sqrt{ \dfrac{[1 - \sin(x)]^{2}}{1- \sin^{2} (x) } }](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5E%7B2%7D%7D%7B1-%20%20%20%5Csin%5E%7B2%7D%20%28x%29%20%7D%20%7D%20)
<u>We know that:</u>


Therefore, <u>the expression becomes:</u>
![\rm = \sqrt{ \dfrac{[1 - \sin(x)]^{2}}{\cos^{2} (x)}}](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5E%7B2%7D%7D%7B%5Ccos%5E%7B2%7D%20%28x%29%7D%7D%20)




<em>see </em><em>the </em><em>attachment</em><em>!</em><em>!</em>
hope it helps
#carryolearning
You might be interested in
Answer:
16.79 %
Step-by-step explanation:
hythjuuhhhjuhhhh
The answer for you problem is 6
33 is composite
49 is composite
21 is composite
Hhhhhhhhhhhhhhhhhhhhhhhhh
Answer:
24 tablespoons I just multiply the equation hopefully this helps you with your questions good luck