Answer:
<em>Uses energy: Amoeba and clock both use energy</em>
<em>Contains cells: true for the amoeba.</em>
<em>Lacks genetic material: true for a clock.</em>
<em>Reproduces: True for amoeba</em>
<em>Has internal organization: True for amoeba and clock both</em>
<em> </em>
Amoeba can be described as a single-celled organism and hence is a living thing. It will show characteristics of a living thing. Whereas, a clock can be described as a device to watch time. It is a non- living thing.
2) Solubility is how much solvent will dissolve in solute.
Answer:
Explanation:
The kPa-kilopascal is the unit of pressure. It was named after Blaise Pascal, a mathematician and physicist.
The kPa is 1000Pa. Kilo stands for 1000. Now what is a pascal?
A pascal is the amount of force(Newton) exerted per unit area.
1Pa = 1Nm⁻²
At the standard atmospheric level, the pressure is 101.325 x 10³ Nm⁻² i.e the atmosphere exerts a pressure of 101.325 x 10³N in an area of a body.
This unit is used to calculate pressure. It can be converted to other units.
Answer:
4 C3H5N3O9 ------> 6N2 + O2 + 10H2O + 12CO2
Explanation:
Nitroglycerin has a chemical formula C3H5N3O9. The balanced chemical equation is as follows:
4 C3H5N3O9 ------> 6N2 + O2 + 10H2O + 12CO2
We suppose that in a reaction, 44g of carbon dioxide is produced. The mass of nitroglycerin that must have reacted will be calculated as under:
Molecular mass of Nitroglycerin = 227g/mol
Molecular mass of Carbon dioxide = 44g/mol
No. of moles of carbon dioxide produced = 44/44 = 1 mole produced.
Now, from balanced chemical equation, we can see that
12 moles of carbon dioxide are produced by = 4 moles of nitroglycerin.
1 mole of carbon dioxide is produced by = 4/12 = 1/3 moles of nitroglycerin.
Mass of nitroglycerin which produced 1 mole of carbon dioxide = 1/3 x 227 = 75.666 grams.
441 g CaCO₃ would have to be decomposed to produce 247 g of CaO
<h3>Further explanation</h3>
Reaction
Decomposition of CaCO₃
CaCO₃ ⇒ CaO + CO₂
mass CaO = 247 g
mol of CaO(MW=56 g/mol) :

From equation, mol ratio CaCO₃ : CaO = 1 : 1, so mol CaO :

mass CaCO₃(MW=100 g/mol) :
