Find m∠BOC, if m∠MOP = 110°.
Answer:
m∠BOC= 40 degrees
Step-by-step explanation:
A diagram has been drawn and attached below.
- OM bisects AOB into angles x and x respectively
- ON bisects ∠BOC into angles y and y respectively
- OP bisects ∠COD into angles z and z respectively.
Since ∠AOD is a straight line
x+x+y+y+z+z=180 degrees

We are given that:
m∠MOP = 110°.
From the diagram
∠MOP=x+2y+z
Therefore:
x+2y+z=110°.
Solving simultaneously by subtraction

x+2y+z=110°.
We obtain:
x+z=70°
Since we are required to find ∠BOC
∠BOC=2y
Therefore from x+2y+z=110° (since x+z=70°)
70+2y=110
2y=110-70
2y=40
Therefore:
m∠BOC= 40 degrees
70 pieces
7/10 = x/100
10*10=100
7*10 = 70
70/100
Answer would be 35 as minus times minus is positive
LCM of 2,4 and 12 is 12
LCM of 9,14 and 20 is 1260
LCM of 15, 27 and 12 is 540
LCM of 6, 5 and 30 is 30