The domain and range of the given function are equal to (0, 3.85) and (0, 18.75) respectively.
<h3>How to calculate the domain of the function?</h3>
In this exercise, you're given the following function h(t) = -4.87t² + 18.75t. Next, we would equate the function to zero (0) to determine its domain as follows:
0= -4.87t² + 18.75t.
4.87t(-t + 3.85) = 0
t = 0 or t = 3.85.
Therefore, the domain is 0 ≤ t ≤ 3.85 or (0, 3.85).
<h3>How to calculate the range of the function?</h3>
h(t) = -4.87t² + 18.75t
h(t) = -4.87(t² - 3.85t + 3.85 - 3.85)
h(t) = -4.87(t - 1.925)² + 18.05
Therefore, the range is 0 ≤ h ≤ 18.05 or (0, 18.75).
Read more on domain here: brainly.com/question/17003159
#SPJ1
Answer:
Step-by-step explanation:
could you provide a picture and i can give you a step by step explanation
$810 !! hope this helps :)
Answer:
-5p-3
Step-by-step explanation:
use the distributive property
Part A
<h3>Answer:
h^2 + 4h</h3>
-------------------
Explanation:
We multiply the length and height to get the area
area = (length)*(height)
area = (h+4)*(h)
area = h(h+4)
area = h^2 + 4h .... apply the distributive property
The units for the area are in square inches.
===========================================================
Part B
<h3>Answer:
h^2 + 16h + 60</h3>
-------------------
Explanation:
If we add a 3 inch frame along the border, then we're adding two copies of 3 inches along the bottom side. The h+4 along the bottom updates to h+4+3+3 = h+10 along the bottom.
Similarly, along the vertical side we'd have the h go to h+3+3 = h+6
The old rectangle that was h by h+4 is now h+6 by h+10
Multiply these expressions to find the area
area = length*width
area = (h+6)(h+10)
area = x(h+10) ..... replace h+6 with x
area = xh + 10x .... distribute
area = h( x ) + 10( x )
area = h( h+6 ) + 10( h+6 ) .... plug in x = h+6
area = h^2+6h + 10h+60 .... distribute again twice more
area = h^2 + 16h + 60
You can also use the box method or the FOIL rule as alternative routes to find the area.
The units for the area are in square inches.