Answer:
a= 17.69 m/s^2
Explanation:
Step one:
given data
A car accelerates uniformly from rest to 23 m/s
u= 0m/s
v= 23m/s
distance= 30m
Step two:
We know that
acceleration= velocity/time
also,
velocity= distance/time
23= 30/t
t= 30/23
t= 1.30 seconds
hence
acceleration= 23/1.30
accelaration= 17.69 m/s^2
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,
The velocity increased from 4 m/s to 22 m/s in 3 seconds. 18 m/s in 3 seconds so the average acceleration is change in velocity divided by time. 18 m/s divided by 3 seconds = 6 m/s^2
Vf = Vi + at
Vf = 0 + 5.4•28
= 151.2m/s..
not sure if its right
<h3><u>Answer and Explanation</u>;</h3>
- input force refers to the force exerted on a machine, also known as the effort, while the output force is the force machines produce or the Load. The ratio of output force to input force gives the mechanical advantage of a simple machine
- <em><u>The output force exerted by the rake must be less than the input force because one has to use force while raking. The force used to move the rake is the input force. </u></em>
- <em><u>The rake is not going to be able to convert all of the input force into output force, the force the rake applies to move the leaves, because of friction.</u></em>