1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harina [27]
3 years ago
12

Space debris left from old satellites and their launchers is becoming a hazard to other satellites. (a) Calculate the speed of a

satellite in an orbit 900 km above Earth’s surface. (b) Suppose a loose rivet is in an orbit of the same radius that intersects the satellite’s orbit at an angle of 90º relative to Earth. What is the velocity of the rivet relative to the satellite just before striking it?
Physics
1 answer:
Pie3 years ago
6 0

Answer:

Part a)

v = 7407.1 m/s

Part b)

v_{rel} = 1.05 \times 10^4 m/s

Explanation:

Part a)

As we know that orbital velocity at certain height from the surface of Earth is given as

v = \sqrt{\frac{GM}{R+h}}

here we know that

M = 5.98 \times 10^{24} kg

R = 6.37 \times 10^6 m

h = 900 km = 9.0 \times 10^5 m

now we have

v = \sqrt{\frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})}{6.37 \times 10^6 + 9.0 \times 10^5}}

v = 7407.1 m/s

Part b)

When a loose rivet is moving in same orbit but at 90 degree with the previous orbit path then in that case the relative speed of the rivet with respect to the satellite is given as

v_{rel} = \sqrt{2} v

v_{rel} = 1.05 \times 10^4 m/s

You might be interested in
Explain the relationship between electrical charge and force.
Radda [10]
The relationship between electrical and charge force is that electrical force strengthens and increases the energy pulses and reflects off an object and makes the force about two times greater with charge.
7 0
3 years ago
Singing that is off-pitch by more than about 1% sounds bad. How fast would a singer have to be moving relative to the rest of a
Nina [5.8K]

Answer:

-3.396 m/s or 3.465 m/s

Explanation:

v = Speed of sound in air = 343 m/s

v_s = Relative speed of the singer

f = Observed frequency

f' = Actual frequency

1% change can mean f=1.01f'

From the Doppler effect equation we have

f=f'\dfrac{v}{v+v_s}\\\Rightarrow 1.01f'=f'\dfrac{v}{v+v_s}\\\Rightarrow 1.01=\dfrac{343}{343+v_s}\\\Rightarrow v_s=\dfrac{343}{1.01}-343\\\Rightarrow v_s=-3.396\ m/s

The velocity is -3.396 m/s

when f=0.99f'

f=f'\dfrac{v}{v+v_s}\\\Rightarrow 0.99f'=f'\dfrac{v}{v+v_s}\\\Rightarrow 0.99=\dfrac{343}{343+v_s}\\\Rightarrow v_s=\dfrac{343}{0.99}-343\\\Rightarrow v_s=3.46464646465\ m/s

The velocity is 3.465 m/s

3 0
3 years ago
An object moving in a constant velocity will always have a
jeka94

Answer:

constant velocity unless acted on my an opposite force

7 0
4 years ago
A pebble is thrown into the air with a velocity of 19/m at an angle of 36 with respect to the horizontal.
kow [346]

Answer:

The maximum height the pebble reaches is approximately;

A. 6.4 m

Explanation:

The question is with regards to projectile motion of an object

The given parameters are;

The initial velocity of the pebble, u = 19 m/s

The angle the projectile path of the pebble makes with the horizontal, θ = 36°

The maximum height of a projectile, h_{max}, is given by the following equation;

h_{max} = \dfrac{\left (u \times sin(\theta) \right)^2}{2 \cdot g}

Therefore, substituting the known values for the pebble, we have;

h_{max} = \dfrac{\left (19 \times sin(36 ^{\circ}) \right)^2}{2 \times 9.8} = 6.3633894140470403035477570509439

Therefore, the maximum height of the pebble projectile, h_{max} ≈ 6.4 m.

3 0
3 years ago
How does Earth's surface and the structures on the surface change as a result of an earthquake? Help me pls and I will give Brai
EastWind [94]
<span>Earthquakes often cause dramatic changes at Earth's surface. In addition to the ground movements, other surface effects include changes in the flow of groundwater, landslides, and mudflows. Earthquakes can do significant damage to buildings, bridges, pipelines, railways, embankments, dams, and other <span>structures</span></span>
6 0
4 years ago
Other questions:
  • A rocket carrying a satellite is accelerating straight up from the earth’s surface. At 1.15 s after liftoff, the rocket clears t
    12·1 answer
  • A 1,600 kg train car rolling freely on level track at 16 m/s bumps into a 1.0 × 103 kg train car moving at 10.0 m/s in the same
    15·1 answer
  • Two waves equal amplitudes meet other result in a wave with zero amplitudes. Which phenomenon
    6·1 answer
  • What approximate "weight" is an astronaut on the moon if his mass is 80 kg? A. 128 N B. 176 N C. 784 N D. 50 N
    6·2 answers
  • A pole vaulter takes 1.3 seconds to fall from peak height to the landing mat. What is his vertical velocity at contact with the
    7·1 answer
  • A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a lar
    11·1 answer
  • A 1230 kg pile driver is used to drive a steel I-beam into the ground. The pile driver falls 7.07 m before contacting the beam,
    15·1 answer
  • INTRO PHYSICS: Two planets are 3 x 10^7 km apart. Planet A has a mass of 8 x 10^24 kg. Planet B has a mass of 1 x 10^25 kg. What
    8·1 answer
  • Convert 5.7 cm to mm:
    8·2 answers
  • 4. Sally applies a horizontal force of 462 N with a rope to drag a wooden crate across a floor with a constant speed. The rope t
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!