<span>Answer:
</span><span>
</span><span>
</span><span>Li⁺ (aq) + OH⁻ (aq) + H⁺ (aq) + Cl⁻(aq) → Li⁺ (aq) + Cl⁻ (aq) + H₂O(l)</span><span />
<span>Explanation:
</span>
<span>1) Combine the cation Li⁺ (aq) with the anion Cl- (aq) to form LiCl(s).
</span>
<span>LiCl is a solid soluble substance, a typical ionic compound. So, it will reamain as separate ions in the product side: Li⁺ + CL⁻</span>
<span>2) Combine the anion OH⁻ with the cation H⁺ to form H₂O(l).
</span>
<span>Since, the ionization of H₂O is low, it will remain as liquid in the product side: H₂O(l)</span>
<span>3) Finally, you can wirte the total ionic equation:
</span>
Li⁺ (aq) + OH⁻ (aq) + H⁺ (aq) + Cl⁻(aq) → Li⁺ (aq) + Cl⁻ (aq) + H₂O(l)
The membrane<span> keeps the </span>digestive <span>materials from leaking out into the cytoplasm and destroying the </span>cell<span>.
</span><span>
</span>
B,Si,Ge,As,Sb,Te, and At are all the metalloids on the periodic table of elements.
Latent heat of fusion for ice is 33600J/k
Heat absorbed
- k_f×m
- 31.6×33600
- 1061,740mJ
- 1061J
To solve this, we simply equate the change in enthalpy for
the two substances since heat gained by water is equal to heat lost of aluminum.
We know that the heat capacity of aluminum is 0.089 J/g°C and that of water is
4.184 J/g°C. Therefore:
450.2 (95.2 - T) (0.089) = 60 (T – 10) (4.184)
3,814.45456 – 40.0678 T = 251.04 T – 2,510.4
291.1078 T = 6,324.85456
<span>T = 21.7°C</span>