Answer:
Attraction
(e-) ---> <--- (H+)
Repulsion:
<---(e-) (e-)-->
Neutral:
(e-) (Helium)
Explanation:
Accordingly to coulomb's law:
In the attraction, the hydrogen without an electron has a positive charge and needs to be fulfilled with a negative charge found in an eletron.
In the repulsion, both electrons has the same charge and repulse each other.
In the neutral case, the Helium is highly stable therefore the electron is not attracted.
Answer:
-21 kJ·mol⁻¹
Explanation:
Data:
H₃O⁺ + OH⁻ ⟶ 2H₂O
V/mL: 50 50
c/mol·dm⁻³: 1.0 1.0
ΔT = 4.5 °C
C = 4.184 J·°C⁻¹g⁻¹
C_cal = 50 J·°C⁻¹
Calculations:
(a) Moles of acid

So, we have 0.050 mol of reaction
(b) Volume of solution
V = 50 dm³ + 50 dm³ = 100 dm³
(c) Mass of solution

(d) Calorimetry
There are three energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the water
q₃ = heat to warm the calorimeter
q₁ + q₂ + q₃ = 0
nΔH + mCΔT + C_calΔT = 0
0.050ΔH + 100×4.184×4.5 + 50×4.5 = 0
0.050ΔH + 1883 + 225 = 0
0.050ΔH + 2108 = 0
0.050ΔH = -2108
ΔH = -2108/0.0500
= -42 000 J/mol
= -42 kJ/mol
This is the heat of reaction for the formation of 2 mol of water
The heat of reaction for the formation of mol of water is -21 kJ·mol⁻¹.
Answer:
0.203 is the mean of the concentration of the HCl solution
Explanation:
You have 5 concentrations. The most appropiate result is the mean of those results. The mean is a statistical defined as the sum of each result divided by the total amount of results. For the results of the problem, the mean is:
0.210 + 0.204 + 0.201 + 0.202 + 0.197 = 1.014 / 5 =
<h3>0.203 is the mean of the concentration of the HCl solution</h3>
Hello Camkirkland,
I think that you are trying to balance this equation.
In order to balance a chemical equation, the numbers of atoms of each element must be equal on both sides of the equation.
In this particular equation, the answer would be (2) HBr + (1) Mg(OH)2 ---> (1) MgBr2 + (2) H2O.
Hope this answers your question!
It allows electrons to flow from the anode to the cathode.