Add 7 water atom to the right hand side to adjust the quantity of oxygen. Increase Cr(+3) by two to adjust the quantity of Cr. Duplicate Cl-by two to adjust the quantity of chlorine molecules.
Cr2O7[2-](aq) +2 Cl[-](aq) < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
Presently adjust that charges.
you have - 4 charges on the left hand side, while +18 charges on the right hand side, there for include 14H+ the left hand side to adjust the charges
Cr2O7[2-](aq) +2 Cl[-](aq)+14H+ < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
take note of that the oxidation number of hydrogen in water is +1
When `CO_(2)` is bubbled through a cold pasty solution of barium peroxide in water, `H_(2)O_(2)` is obtained. <br> `BaO+CO_(2)+H_(2)OtoBaCO_(3)+H_(2)O_(2)` Barium carbonate being insoluble is filtered off. This is known as Merck's process.
<h3>What is meant by Perhydrol?</h3>
perhydrol (countable and uncountable, plural perhydrols) A stabilised solution of hydrogen peroxide.
<h3>What is Merck's Perhydrol?</h3>
Uses: Perhydrol is used as an antiseptic for wounds, and also acts as a germicide to kill bacteria and germs.
Being a strong oxidizing agent it has bleaching properties and acts as a ripening agent.
Learn more about merck's process here:
<h3>
brainly.com/question/16856280</h3><h3 /><h3>#SPJ4</h3>
<span>7.39 ml
For this problem, simply divide the mass of mercury you have by it's density.
100 g / 13.54 g/ml = 7.3855 ml
Since we only have 3 significant digits in 100., you need to round the result to 3 significant digits. So
7.3855 ml = 7.39 ml</span>
This is true. Water is the solvent in aqueous solutions
Answer with Explanation:
This is expirament based Q
1) Bring a magnet near ... the Cobalt will come out of te mixture and get attracted to magnet
2) Disolve it in a solution of ethanol. The Idoine gets dissolve and the other doesnt.
Hope im right!!